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High throughput technologies such as gene expression microarray, ChIP-chips, siRNA
and protein arrays, and high throughput mass spectrometry are enabling an ever in-

creasing amount of data becoming available about DNA, RNA, proteins, metabolites as

well as biological pathways and networks. The knowledge embedded in this data deluge
needs to be recast in forms that lend themselves to analysis with the expectation of de-

veloping analytical instruments to gain insight and answer questions about life and living

organisms. The powers of abstraction and model building are fundamental to the quest
of making sense of the biological complexity embedded in these biological and clinical

datasets. The modeling of living organisms is explored with a proposed framework for

model representation of biological complexity. The principal foundational assumption of
the proposed modeling philosophy recognizes the symbiotic relationship between infor-

mation and energy flows, required for the transformation of matter, as a fundamental
organizing force underlying the observable nature of living organisms. The use of the

concept of regularities to refer to complexity of structure, function and dynamics alike

provides a unified approach to the reasoning about the integration of knowledge repre-
sentations of varying natures and scales of granularities. The application of the proposed

modeling approach is illustrated in broad qualitative terms for the human organism.

Keywords: Multi-Scale Modeling; Effective Complexity; Biological Regularities.

1. Introduction

High throughput technologies such as gene expression microarray, ChIP-chips,

siRNA and protein arrays, and high throughput mass spectrometry are enabling

an ever increasing amount of data becoming available about DNA, RNA, proteins,

metabolites as well as biological pathways and networks. In theory, an unprece-

dented opportunity lies before our eyes to shed light on the structure and dynamics

of biological processes through model building and analysis. Modeling and analysis

will in turn contribute to the ongoing quest to elucidate the nature of life’s hierar-

chy of complexity tying gene regulation to the states of health and disease of living

organisms. The implications of this enterprise of scientific discovery span a large

application space of human needs and interests which include the development of

therapies and pharmaceutical drugs to treat diseases, safe food production, and the
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preservation of a healthy biosphere. Computational modeling and simulation are

believed to be key to twenty first century biological research and its quest to pro-

vide a satisfactory understanding of the nature of life and its processes 1. Modeling

is essentially the substitution of one knowledge representation with another. Differ-

ent knowledge representations are built using different abstractions and analytical

tools, and draw from different perspectives of knowledge interpretation. Models

are attempts to recast knowledge in forms that lend themselves to analysis and

provide as a result analytical instruments to develop insight and answer questions

about the process, mechanism or system under study. Ultimately, the convergence

to insight through modeling and analysis is predicated on the assumption that the

models are less complex than the system under study. This assumption holds true

in general, since models are inevitably confined by the abstractions and knowledge

representation approaches they rely on and as a result they cannot embody the full

complexity of the system being modeled. Therefore, it may be reasonable to assume

that no single model view can shed light on the full complexity of a system. Model

integration mechanisms are therefore necessary to yield a coherent insight about

the nature and dynamics of biological processes by connecting model views that are

distinct in nature, scope and scale. The proposed modeling philosophy explores the

conception of such integration mechanisms starting from the assumed existence of

organizing principles that support a putative thread of unity among various aspects

of a complex biological system.

The powers of abstraction and model building are fundamental to problem solv-

ing. We use these capabilities as systematic intellectual tools to handle the com-

plexity of the real world. From the planning of a family vacation to the forecasting

of the weather, human activities are weaved around countless types of physical and

conceptual models. We often speak of abstract models to capture a mental represen-

tation of something real or conceptual. These models enable reasoning in the midst

of problem space diversity that makes up human reality from the mundane tasks

of grocery store visits to the construction of skyscrapers. These models, whether

explicitly formed, represented and used or implicitly incorporated in our thinking

processes are the corner stones of all human decision making processes. In biological

research, qualitative models are the most accessible and intuitive manifestations of

abstraction. They summarize facts and knowledge within a representation frame-

work that facilitates communication of a specific understanding. One example il-

lustration of this modeling approach is the qualitative representation of regulatory

dynamics provided by Thieffry et al. 2. Graphical models of signaling pathways,

protein interaction networks, and genetic associations embody integrated represen-

tations and bring enhanced clarity often indispensable to further analysis of the

issues at hand 3,4,5. The often limited scope of these qualitative models, such as

capturing the topology of a signaling cascade without accounting for kinetics or

thermodynamics, allows the separation of concerns in dealing with the overwhelm-

ing multi-factorial complexity of biological mechanisms. However, these qualitative

models are limited in their ability to assist in dealing with the ever growing biolog-
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ical datasets and the perplexing information complexity they seem to be carrying.

Observing the unraveling of biological complexity through high throughput exper-

iments is analogous to the opening of a black box that seems to lay bare to the

eye more and more components with no accompanying hints about their mutual

relationships or their contributions to biological function or disease. In this respect,

visualization methods may bring a degree of clarity through graphical and video an-

imated representations of relationships and pathways, hence facilitating the gaining

of biological insight. Gehlenborg et al. 6 discusses the challenge of meaningfully visu-

alizing Omics data in relation to protein interaction, gene expression and metabolic

pathways. These methods are without a doubt valuable in the quest to discover

and identify the entities and networks involved in biological processes. However,

the problem of uncovering and understanding the biological basis for function and

disease cannot fully be solved by the mere availability of detailed descriptions of

these biological components and their associated signaling and metabolic pathways

and networks. Modeling is inevitably necessary because it brings with it a framing

coherency that glues back these identified components into system models where

the principles and constraints responsible for the experimentally observed organi-

zation of the biological system have been substituted with organizing threads of

knowledge representations. Such metamorphic gluing of biological data into model

representations, which must be analytically approachable as well as computable, is

essential to squeezing out the key understanding and insights necessary to advance

life science and medical research in the many areas of human interests, including: (1)

screening for effectiveness and side effect of drugs and therapies, (2) generation and

analysis of hypotheses about the biological, biochemical and genetic underpinning

of function and disease, (3) conception of biologically plausible models of organism

development, growth, reproduction, and epigenetics to support human health and

well being, and (4) conception of ecological models of life and the biosphere.

Modeling of biological processes and systems has been partially fueled by the

qualitative models of statistical basis such as Bayesian networks 7, principal compo-

nent analysis 8, and hidden Markov models 9,10. These models are used to identify

patterns and correlations in biological datasets, leading to conceptual reconstruction

of signaling pathways, transcription networks and the finding of new protein cod-

ing genes. Boolean networks are qualitative logical models that have been used to

study hypotheses about specific aspects of biological structure and dynamics 11. For

the modeling of gene regulation, Boolean networks and digital logic-based models

rely on a binary information processing abstraction of gene expression mechanisms.

In essence, such models reduce the structure and dynamics of the gene expression

machinery (genes, proteins, transcription factors, RNA Polymerase complex) to a

binary decision making unit not unlike a digital integrated circuit 12,13. These logical

models are instrumental in exploring the logic systems underlying gene regulation,

signaling cascades and protein interactions 14,15,16,17. However, most logical models

rely on reductionist abstractions that direct their focus away from essential elements

of the biological context such as thermodynamics and kinetics. As a result they are
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intrinsically limited in their capacity to predict biological behaviour. Stoichiometric

models of biochemical networks have a similar limitation which may be overcome

with the use of constraint-based optimizations to reduce the set of possible net-

work solutions 18. On the other end of the modeling spectrum, quantitative models

provide a bottom-up representation of the physicochemical mechanisms underlying

biological processes using the mathematical methods of differential calculus, includ-

ing ordinary and partial differential equations (ODEs, PDEs) and their stochastic

forms 19,20,21,22,23,24. These mechanistic models often require detailed knowledge

of rates and parameters that is not always possible to obtain. Given this limita-

tion, hybrid modeling approaches may be conceived where quantitative models are

utilized to account for the mechanistic processes at some chosen level of resolution

while logical abstractions are used to integrate the model. In this respect, the choice

of the levels of physical and logical resolutions of modeling is essential to advancing

our understanding of biological complexity 25.

2. In Search of an Effective Modeling Paradigm

The modeling of biological complexity can be approached through the conception

of organizing principles to enable the development of integration frameworks that

are operational across the multiple levels of abstractions necessary to represent

the different views, scales and aspects of biological processes and their underlying

mechanisms. The reliance on organizing principles that are biologically plausible

may translates into models that embody a satisfactory capacity to predict biologi-

cal behaviour and facilitate the reasoning about the nature of biological pathways

and dynamics associated with biological function and disease. The logical concep-

tion of such organizing principles requires a closer look into the nature of biological

complexity and how it may be reconstructed through the application of logical,

quantitative and hybrid modeling methods to biological knowledge and data. The

formidable scale of this model-based reconstruction challenge has enlisted a variety

of perspectives spanning a wide spectrum of insights, all attempting to frame the

issues most central to biological processes 25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41.

Irrespective of the insight driving the inquiry into the nature of life and living organ-

isms, the sought after models of biological processes must internalize representations

of biological complexity that are both accessible to analytical reasoning and compu-

tationally realizable. The effectiveness of model representations will depend on the

capacity of the resulting models to yield analytical insights and offer biologically

plausible simulation results that help explore the fundamental biological questions

of development, growth, reproduction and disease.

Computational modeling has been applied to many areas of biological research

with increasing impact on advances in biological and medical research 1. The mod-

eling methods and approaches being used range from strategies that are based on

fine grain mechanistic algorithms with limited scope and context to coarse grain log-

ical abstraction models. The application of different modeling strategies to divers
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biological scopes yield different model views of biological complexity. These views

lead to a diversity of insights about the various physiological, pathological, genetic

and epigenetic dimensions of living organisms. An integrated model of these views

is however needed to frame the coupling and the dynamics of interactions between

the relevant biological processes. Furthermore, it may be reasonable to assert that

the success of any model representation of biological complexity depends on the ca-

pacity of the modeling philosophy to provide constructs that enable the reasoning

about biologically observed properties such as robustness, stability, and adaptation

and their relationships to the overall physiological and pathological states of living

organisms.

The notion of effective complexity put forth by Gell-Mann and Seth Lloyd 42,43

embodies a perspective about the nature of complex system that may help in the

exploration of potential answers to the model integration issue raised in the previ-

ous section. Effective complexity of a system is defined as the minimum amount of

information necessary to describe its regularities 42. Regularities may be generally

defined as any non-random structural or dynamic patterns. Applying this defini-

tion to biological systems, the effective complexity of a living organism would be

the minimum amount of information needed to describe its structural and dynamic

regularities such as the DNA transcription process, the citric acid cycle, the DNA

repair process, proteins, genes, biological oscillators, oscillations, and the lipid bi-

layer of a cell membrane. The explicit consideration of regularities as the elemental

components of biological complexity may facilitate the reasoning about knowledge

representation and the degrees of representational granularity and resolution as

they apply to structure, function and dynamics alike. Using the above definition of

complexity, the proposed modeling approach is built on the assumption that living

organisms reduce to a countable set of interacting regularities (structural, func-

tional, dynamic and combination of thereof). Furthermore, it is also hypothesized

that these regularities are dedicated to the transformation of matter for develop-

ment, growth and reproduction through energy use and transfer. The operational

logic of these regularities is assumed to be determined by the genetic and epigenetic

DNA information content and the programs of information processing and transfer

encoded therein. Ultimately, these information processing programs determine how

energy is generated, transferred and used to enact and guide matter transformation.

Reciprocally, energy is a necessity for all information processing activities including

DNA Replication, signal transduction, and intercellular communication (see Fig.

1).



Modeling of Living Organisms Using Hierarchical Coarse-Graining Abstractions of Knowledge

6 Youcef Derbal

Fig. 1. Information, Energy and Matter. The symbiotic relationship between information, energy,
and matter is hypothesized to be the fundamental organizing force underlying the observable

nature of living organisms. Among the manifestations of such organizing force is the transfor-

mation of nutrients (matter) into proteins through the formation of peptide bonds between the
constituent amino acids. This transformation (comprising the processes of RNA transcription,

post-transcription modification, RNA translation, protein folding, etc.) is enacted, controlled and

regulated by a biochemical machinery (involving RNA polymerases, transcription factors, spliceo-
some, tRNA adaptors, enzymes, ribosomes, etc.) operating under the instructional guidance of the

DNA information content of the genes, the non-coding regions, and DNA imprinting. Furthermore,

the translation of genes into proteins involves a transfer/flow of information (genetic sequence)
from DNA to proteins where it is internalized as polypeptide sequences of amino acids. Such in-

formation is key to protein folding and ultimately to the functions of proteins as the workforce
enabling development, growth and maintenance of living organisms. This transformative flow of

information would be impossible without the energy generated and made available for the cell as

ATP (Adenosine Triphosphate ), mostly by mitochondria in eukaryotes. The electron-transport
chain involved in the energy generation includes among other components the membrane proteins

of mitochondria and ATP Synthase. The information content of these proteins is sourced from the

DNA, closing hence the symbiotic loop between information, energy and matter.
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Overall, the principal foundational assumption of the proposed modeling philos-

ophy recognizes the symbiotic relationship between information and energy flows

required for the transformation of matter as a fundamental organizing force under-

lying the observable nature of living organisms. Potential links may be conceivable

between this assumption and a recently proposed approach to the study of organi-

zational phenomena which conjunctures that the evolution of flow matter/energy

within the physical reality is manifest as self-similar, scale invariant structures and

processes emergent in all the layers of an organizational hierarchy 34. One may

postulate from the assumption being put forth that the development of biologically

plausible models of living organisms is best approached through the representation

of biological regularities with a deliberate consideration of information flow and the

constraints on energy generation, consumption, flow and availability. The output

models must as a result be architecturally equipped with mechanisms to integrate

the multi-scale representations of regularities ranging from the elementary DNA in-

formation processing mechanisms such as replication and transcription to the high

level functions of the Physiome. Biological plausibility of the resulting models may

be entrenched by design using integration strategies that are conceived through in-

spiration from the experimentally observed organizing constraints on matter, infor-

mation and energy flows respectively. The next sections will explore the conceptual

elements of the proposed modeling philosophy and provide some practical strate-

gies to apply them towards the development of computational models of biological

processes.

3. Modeling Biological Complexity

Computational models of living organisms embody representations of knowledge

about biological regularities (biological entities and processes). However, unlike de-

scriptive knowledge, computational models incorporate a mathematical accounting

for the dimensions of time and space, enabling hence the construction of virtual

models of living organisms whose space-time dynamics can be simulated using a

computer. The multi-scale nature of biological processes interacting within the con-

fines of a living organism may require for their modeling a resolution hierarchy of

knowledge representation. In such resolution hierarchy, ODE based models are more

appropriate whenever fine grain modeling is necessary to capture the observable bi-

ological behaviour such as is the case for metabolic reactions. On the other hand

coarse grain models based on Statecharts 44, for example, may be adequate to repre-

sent the state dynamics of the cell cycle. Model integration of fine and coarse grain

representations of biological regularities require a multi-scale structure that echoes

the natural organization of multi-cellular organisms whose constituency scaffold in-

cludes basic elements (Carbon, Oxygen, Nitrogen) , nucleotides (Adenine, Cytosine,

Guanine, Thymine, Uracil), DNA/RNA, proteins, cells, organs and systems. Such

multi-scale structure can be realized using a layered architecture, where the lower

layers are populated with fine grain representations of mechanistic processes re-
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lated to information storing, reading, replication (DNA transcription, translation,

and replication), and the underlying biochemical kinetics. On the other hand, the

successive higher layers would be populated with increasingly coarse grain repre-

sentations of higher level biological processes associated with relevant biological

entities along the hierarchy of the organisms constituency scaffold. The resulting

computational model has multiple layers, each made up of interacting computational

modules (CMs) to model the relevant biological regularities with the appropriate

granularity in accordance to the model resolution hierarchy articulated above (see

Fig. 2).

In the proposed modeling strategy, the effect of the organizing constraints of en-

ergy flow, matter transformation and information flow in living organisms is realized

through hierarchical state feedback between the layers of the computational model.

In particular, the computational modules representing the genetic and epigenetic

programs of development, growth and reproduction drive the model’s state dynam-

ics in accordance to the DNA information content (including genomic imprinting)

of the living organism. The dynamics of the model are also constrained, through

hierarchical state feedback, by the output of the CMs that represent the processes

of adaptation to environmental pressures and constraints to which living organisms

are subjected, including the varying supply of food, energy, oxygen as well as the

exposure to toxins, pathogens and trauma. Furthermore, hierarchical state feedback

would provide a natural mechanism of structural integration between CMs such as

would be the case in linking CMs that model metabolic pathways and lower level

CMs that model gene networks that regulate the expression of the relevant enzymes.

The model architecture with its embedded resolution hierarchy of knowledge

representation is intended to reflect the assumption that a living organism may

be viewed as a system layered in relation to the biological processes relevant to

the hierarchy of the organism constituency scaffold (Basic Chemical Element, Nu-

cleotide, DNA/RNA, Protein, Cell, Organ, and System). Furthermore, each layer

of such system is also assumed to embody a complexity of a different nature in

the sense that it requires for its modeling a set of computational modules that are

layer-specific in their resolution of modeling and underlying abstractions.

The hierarchy of dynamics (regularities) represented with different degrees of

granularities is one of the defining elements of hierarchical control systems which

are often qualified as intelligent 45,46,47,48. One of the design principles of these

human engineered systems is to employ high precision control models for the lower

levels of the hierarchy, and rely on intelligent models of decision making for the

higher levels of the hierarchy. In particular, differential calculus is used to formulate

control strategies with a desired control precision at the lowest levels of the system,

often associated with actuation. Models that utilize coarse grain reasoning, such as

fuzzy logic, are used for high level supervisory and management control, which take

instructions and commands from within the context of human mundane reality. This

design philosophy is often summarized as entailing an inverse relationship between
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Fig. 2. Hierarchical Model of Living Organisms. Living organisms are modeled as a hierarchy of

layers comprising representations of biological processes distinguishable by the resolution, interpre-
tation, and processing strategy of the relevant biological information. The layers are interdependent

through state feedback but they each embody a complexity of a different nature. For example, the

proliferation of cancer and the morphological state of the associated lesion may be represented in
the highest model layer using an FSM (finite state machine). In a lower layer of the model, the

dynamics of production and diffusion of chemokines and cytokines in the tumor’s environment

may be modeled using ODEs (Ordinary Differential Equations) and PDEs (Partial Differential
Equations). The two representations (ODE/PDE and FSM) are addressing two distinct types of

complexity. Although the morphological state of the lesion may depend in its emergence on the

circulation of chemokines and cytokines in the tumor’s environment, the complexity of the le-
sion state dynamics, embodied by the FSM, is not reducible to the complexity, embodied by the

ODEs/PDEs, of the dynamics of production and diffusion of chemokines and cytokines. Put differ-
ently, one may be able to reason about the health of the affected individual based on the state of

the lesion. This involves a complexity associated with predicting the cancer’s course of progression

and the most appropriate therapies based on clinical knowledge. On the other hand attempting
the same assessment of the individual’s health by inspecting the distribution of chemokines and

cytokines instantiates a complexity of a different nature in the sense that it may involve the need
to consider inter-cellular communication mechanisms mediated by these cell signaling proteins and
their role in cancer progression.

intelligence and precision. In other words, the lower layers of the hierarchy realize

high precision control with a reduced capability for intelligent decision making,

whereas the higher layers of the hierarchy exercise intelligent decision making with

reduced precision of control. The applications of this design philosophy to human

engineered systems such as trains, planes and power plants provide an instructive

insight about the effectiveness of hierarchical control models and the relationships
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between the distinct representations of regularities that must be integrated in the

computational models of these systems.

The proposed multi-scale model of biological systems carries a significant mark

of analogy to successfully designed hierarchical control systems. The highlighted

parallels between engineering and biological systems provide the motivation for

the applications of mathematical and computational engineering tools to the de-

velopment of models of living organisms. However, for these models to be biologi-

cally plausible they must have an adequate accounting for the biological complexity

emergent from the working of the DNA-information driven metabolic reactions that

transform matter and energy, and the gene-regulated biological mechanisms of adap-

tation and robustness that maintain the organism’s functions under the constraints

and pressures of the environment. Ultimately, useful models of living organisms

must be biologically plausible both in structure and behaviour. Specifically, such

models must internalize the causal chains of biological mechanisms that lead to

the observable physiological and pathological behaviours of interest. In addition,

computer simulations of these models must exhibit the expected physiologic and

pathologic behavioral scenarios of the living organism for specific environmental

and internal state conditions. The physiologic and pathologic behavioral scenarios

may be defined based on the time profile of the measurable or observable biological

variables that convey physiological or pathological information about living organ-

isms such as metabolite and protein concentrations, blood pressure, tissue lesion

size, inflammation status, antibody count, and viral count. Let V be the set of such

physiological and pathological variables, then ∀v ∈ V there is a set PT
v of time

traces, referred to as profiles, of the values of the variable v during the time period

T . Different profiles pv(T ) ∈ PT
v for a given physiological/pathological variable re-

sult from different environmental and internal conditions of the living organism. An

organism’s behavioral scenario s(T ) is defined as the collection of the concurrent

profiles of all v ∈ V for the same time period T under the assumed environmen-

tal conditions. Note that for any given time period T a physiological/pathological

variable v has a single profile pv(T ) for the specific environmental conditions being

assumed.

Integral to the modeling approach, all asserted or putative knowledge about

the organism’s biological mechanisms will be explicitly internalized in the compu-

tational modules. The causal chains linking the biological processes are modeled

by the structural associations between the computational modules. These asso-

ciations represent the channels of interactions between the biological mechanisms

within the hierarchical model architecture articulated above. The behavioral (physi-

ologic/pathologic) scenarios of the model collectively provide a simulated instance of

the dynamic behaviour of the living organism. In essence, the simulated behavioral

scenarios represent the sum model integration of known or hypothesized regulari-

ties assumed to yield the observable or hypothesized physiological and pathological

behaviours of the living organism.

The bewildering complexity of living organisms is associated with an infinite
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set S of possible physiologic and pathologic behavioral scenarios. However, the

modeling of a living organism is driven by a finite subset S0 ⊂ S of observable

behavioral scenarios. Let g : M → S be the mapping from the set M of possible

computational models of a living organism to the set S of behavioral scenarios.

Developing a computational model mo ∈ M that exhibits the set S0 of behavioral

scenarios is essentially a process of estimating the inverse mapping g−1 : S → M
. It is clear that there are more than one model mo that satisfies g(m0) = S.

This is despite the constraints imposed by the hierarchical model architecture A
articulated earlier, and the structural knowledge and known biological mechanisms

embedded in the computational modules. In practical terms, the non-uniqueness

of mo means that a large space of modeling solutions may need to be explored

before converging to a model that is satisfactory in some defined sense. Furthermore,

given that S0 is a finite subset of S, the prediction power of mo ∈ M will be

influenced by the limitation of approximating the inverse mapping using a subset

of the organism’s behavioral scenarios. Moreover, irrespective of the quality of the

approximation, the prediction power of mo ∈M would still be limited in relation to

the classical problem of generalization of discovery from a finite data set. Overall,

it is worth noting that irrespective of the modeling approach being used, true-to-

knowledge computational models would still not recover the entire complexity of

a living organism and as a result would have intrinsic limitations with respect to

their prediction power. However, it is reasonable to assume that the development

of such models is the most logical way forward in dealing with the challenges of

21st century biological research. The conception of quantitative models of these

limitations would be instrumental in developing more effective models of biological

processes and living organisms.

The set S0 of behavioral scenarios cover all data collected through observation

or experimentation about the physiology and pathology of a living organism. Such

data also include experimental results or observation data about similar or com-

parable biological, physiological and pathological processes of other living organ-

isms. Most knowledge about living organisms has been acquired through analytical

methods of induction, deduction and inference applied to experimental data and

observations. However, significant portion of such knowledge which concerns the

structure and internal biological mechanisms has been sufficiently validated that it

would be reasonable to take as a starting point for any modeling project. In this

respect, structural information such as the organism’s genome and proteome as well

as known metabolic reactions and genetic mechanisms of transcription and trans-

lation would constitute the initial structural skeleton of the model. In particular,

gene expression and metabolic processes would be internalized as the algorithms of

the computational modules acting on the genes and protein entities. Information

about the metabolic and gene regulatory networks will translate into structural re-

lationships between the computational modules serving as channels for information

flow.

Given the chosen model architecture A, and the starting model fabric provided
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by the known structural and mechanistic information about the living organism,

the modeling project consists in the development of a computational model that

exhibits the subset S0 of the organism’s behavioral scenarios. This is clearly an

engineering design problem aimed at the full specification of the algorithms of the

computational modules and the protocols of information flows that control their

interactions. The performance or effectiveness of the resulting model may be de-

fined as E =
∑

T

∑
v ‖ pTv − qTv ‖ , where the inner sum is over all v ∈ V , and the

outer sum is over all possible finite intervals of time T . qTv is the model’s generated

profile of the living organism for the variable v during the time interval T , and

‖ . ‖ is a suitable norm. Although the defined model effectiveness E can only be

approximated, it provides a theoretical criterion to guide the development of model-

ing strategies that would enable the development of the sought after computational

model solution m0. As stated earlier, m0 is not unique implying as a result the need

to explore a potentially large solution space through the use of different modeling

strategies, techniques and algorithms. The convergence of such exploration may not

be possible without the reliance on additional system-wide and biologically plausible

constraints to specify the algorithms of the computational modules and the inter-

module protocols of information flow. This question brings us full circle back to

the assumption that the fundamental organizing force of living organisms emerges

from the symbiotic relationship between the information and energy flows neces-

sary for the transformation of matter in accordance to the DNA stored programs

with their genetic and epigenetic dimensions. This relationship is hypothesized to

be at the source of system-wide constraints that translate into observable system

properties such as adaptation and robustness. The pertinent question at this point

is how to reflect the need for the desired properties of adaptation and robustness in

the detail design of the algorithms, parameters, and structure of the computational

modules and their protocols of information flows. Control theory offers a wealth

of adaptive and robust control design strategies that are readily applicable to the

modeling of biological dynamics with quantitative assurance models of stability,

robustness, and sensitivity. The exploration of specific control theoretic strategies

for the development of models of biological processes is beyond the scope of this

work. It may suffice to note here that the literature on biological modeling already

includes a significant number of works dedicated to the application of control theo-

retic approaches and concepts to the development of models of biological processes
21,49,50,51,52,53,54. These works include a theory of approximation for stochastic bio-

chemical processes which can be instrumental in the development of the algorithmic

details of the computational modules 55. The use of Wasserstein pseudo-metrics as

local objective functions for the estimation of model parameters within a computa-

tional module may be coupled to an approximation of the model effectiveness metric

defined earlier. System-theoretic approaches to the biological network reconstruc-

tions constitute another example of research results which provide control-theoretic

tools and strategies to discover system structure 56. These results include analyses

about the fundamental limitations of structure discovery from input-output data.
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The suggested approach of structural perturbation experiments and the associated

design are particularly relevant to the practical realization of the proposed modeling

philosophy given the framing of this last as a reverse engineering process taking as

input the observed behavioral scenarios of the living organism.

4. Computational Modeling of Living Organisms

The previous section outlined a proposed philosophy for the modeling of biological

complexity. The ideas and concepts put forth will be further developed in future

works for specific biological processes and living organisms. Meanwhile, the human

organism is taken as an example to broadly illustrate the possible application of the

discussed modeling perspective.

Modeling involves incremental steps where the scope, level of details and ac-

curacy of the model are evolved as more knowledge is acquired about the living

organism. For the human organism one may start with a graphical rendering of

a very coarse-grain representation of some key biological regularities (see Fig. 3).

The identified regularities and the abstractions used in the elaboration of their

graphical rendering are only intended to illustrate the modeling approach rather

than provide a precise and accurate representation of the relevant biological knowl-

edge about cellular microbiology, human physiology and pathology, and genetics.

For a detail account of such knowledge, the reader is referred to the elaborate and

excellent treatments provided in the relevant texts 57,58,59,60,61.

The graphical illustration of Fig. 3 provides a sketchy knowledge model about a

selection of major biological regularities of the human organism. The application of

the proposed modeling philosophy requires a multi-steps process that starts with the

allocation of biological regularities to their appropriate layers of the model’s archi-

tecture. The modeling abstractions most appropriate for knowledge representation

of the identified biological regularities are subsequently chosen to establish a resolu-

tion hierarchy across the layers of the model. Such resolution hierarchy emphasizes

the representation of biological regularities with varying degrees of granularities.

Fine grain mechanistic models are necessarily needed for the layers that are clos-

est to the biochemical processes of metabolism, DNA/RNA information processing,

energy production and matter transformation. Coarse grain models may provide

on the other hand more appropriate abstractions for the upper layers of the model

where physiological and pathological behaviour are described using macro-states

such as healthy, sick, and stable.
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Fig. 3. Biological Regularities of the Human Organism. (a) key regularities at the cellular and multi-
cellular levels respectively. The concentric arcs represent the direct dependence between the outer

and inner layers. The biochemical processes of metabolism, DNA/RNA information processing,

energy production and matter transformation are placed schematically close to the DNA as the
primary information store. The concentric visual arrangement of the biochemical processes is also

intended to reflect a logical axis of information flow and molecule transport stretched from the DNA

to the lipid bilayer of the cell membrane and beyond. Biological processes are ultimately integrated
at the organism level by the flow of information and matter /energy transported through the
cardio-vasculature, the nerves, and the lymphatic system. The physiological systems are functional

regularities with a system-wide coordination scope over biological processes operating at the cell,
tissue and organ levels. Reciprocally, the cellular and inter-cellular processes provide the life line

for these system-wide functional regularities. Nomenclature: ADP-adenosine diphosphate, NAD+

- nicotinamide adenine dinucleotide, NADP- nicotinamide adenine dinucleotide phosphate, FAD
- flavin adenine dinucleotide, NH3 - ammonia. (b) body-wide structural regularities provide the
channels for the flow of information, energy and matter. They are also involved in the processing
of information and the transformation of matter/energy as illustrated with the molecular species
exchanged at their interfaces. For example pathogens are shown flowing inward of the lymph nodes

where they are confronted by the immune system, whereas Glucose is flowing outwards of the liver
which regulates blood sugar level.
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The result of the first two steps of the modeling process is a model skeleton with

distinct layers and a structure binding the computational modules dedicated to the

realization of the models of identified biological regularities (see Fig. 4). In line with

the assumption that a living organism is an integrated collection of biological reg-

ularities, the modeling strategy treats physiologic/pathologic behavioral scenarios

as a net manifestation of integrated systems of biological regularities rather than

behavioral regularities emerging from the hierarchical compositions of constituents.

For example, the dynamic regulation of fluid volume is not necessarily possible by

mere assemblage of the kidneys, the cardio vasculature and the Gastrointestinal

(GI) and urinary tracks. While these organs are necessary for the realization of the

regulation function, however, such function is not possible without the integration

of other physiological functions, including circulation, filtration and the excretion of

water and electrolytes. Indeed, the flow of matter (blood, metabolites, electrolytes

and water), the consumption of energy, and the flow of information (endocrinal

signaling, nervous system signaling) through the spatial contexts of the regulari-

ties in question lead to their integration and the subsequent realization of the fluid

volume control function. The implication of this assumption is that each model

layer and associated computational modules must capture the complexity of the

relevant biological regularities independently of the structure and processes of the

lower layers of the model. However, the workings of the model layers are integrated

by the information flows which lead as a result to the coupling between the dif-

ferent abstractions and knowledge representations of the computational modules.

Such coupling does however require information processing such as quantization and

filtering to bridge the different types of data being generated or consumed by the

computational modules. For example, the Cell Cycle Control (C3) module respon-

sible for orchestrating the transition between the phases of the cell cycle may be

realized using a Statechart-based reactive model 29,44. Biologically plausible states

of the cell cycle may be defined based on the instantaneous concentrations of the

relevant proteins being within specific value ranges. Such coarse-grain representa-

tion of protein concentration, supplied by the lower layer of the model filters out the

complexity associated with the consideration of specific values of protein concentra-

tion. Fine grain knowledge details may not need to be accounted for at the level of

cell cycle control where the focus is on the overall dynamical behaviour of the cell

cycle. The nature of information processing applied as part of the resolution hier-

archy of knowledge representation depends on the nature of the specific processes

being modeled. Indeed, to model the mechanisms of diffusion and transport across

the cell membrane, quantization of the temporal and spatial distribution of trans-

ported ions may be more appropriate. Such quantized ion distributions could then

be used to define model states of Intracellular fluid / extracellular fluid (ICF/ECF)

volume and composition balance.

The Signal Transduction (STR) module is essentially driven by external stimuli

especially for the case of endocrine signaling. The challenge here is to abstract away

the mechanistic implementation of the signaling pathways, such as the JAK-STAT
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(Janus Kinase /Signal Transducer and Activator of Transcription), while safeguard-

ing the information content and the temporal dynamics of signal reception, relay

and decoding. One possible approach to this issue is to define a list of biologically

plausible basis signals for all potential outputs of the STR module and leverage

communication system theory to develop a signal processing model of the cell sig-

nal transduction process. Nevertheless, the complexity of the modeling task would

still be a difficult challenge given the large number of combinations of protein in-

teraction domains being used in the intracellular signaling cascades 62. An example

basis signal could be a discrete-time binary sequence generated by the STR module

to overcome the G0 blockade of the cell cycle, in response to the external stimuli

of hormones and growth factors. Such signal would trigger the DNA eXpression

Regulator (DXR) and Metabolic Control (MC) to initiate the timely degradation,

inhibition, activation or synthesis of protein products such as P27, and Cyclins C

and D implicated in keeping the cell in G0 and also known to be responsible for

its G1 re-entry respectively. The DXR and MC modules may be realized using a

variety of mathematical and control theoretic models, some of which have been re-

cently reported in the literature 63,64. These models could be readily integrated into

larger discontinuous control structures using bang-bang and sliding mode control
65,66. Such variable structure control models would then be driven by the discrete-

time binary signal output of the STR module. Such binary signal may on the other

hand require filtering or mathematical integration over time before being feed to the

cell cycle control and the Cell State Dynamics (CSD) module. The computational

realization of the C3 and CSD modules may be achieved using Statechart based

reactive models, where state transitions are guarded by conditions dependant on

threshold crossings by the signal inputs to the modules. The cell states of the CSD

module may be defined based on a potentially long list of conditions and factors

that involve among other contributors, the concentrations of cellular proteins and

molecular species, cell morphology as deduced from the presence of some biologi-

cal markers, the state of the DNA chromatin, and the state of the cell receptors.

The resulting model states may include normal, infected, atypical, and abnormal. It

should be noted that this list is only an indication of the possible states that must

be defined to capture a biologically and clinically plausible model characterization

of the physiological/pathological states of a cell.
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Fig. 4. Multi-Scale Computational Model of the Human Organism. The biological processes of

a human organism are categorized according to their scope (cell, tissue/organ, and body) and
their involvement in: (1) matter transformation and transport, (2) information processing and

flow, and (3) control, regulation and management. The model is conceived as a collection of

computational modules each dedicated to the modeling of biological processes that belong to the
same realm of functional category (metabolism, signal transduction, gene expression regulation,
etc. ). For example the metabolic control module represents the algorithmic model of regulation

and control of biochemical networks. The modules are loosely coupled and equipped with well
defined information interfaces made up of observable or experimentally measurable variables such

as the concentrations of molecular species and the cell states. The model integration is enabled by

the information flowing between the modules including signals, protein concentration values, cell
state, physiological state, etc. The modules interact in a context defined by the hierarchical coarse-

grain knowledge abstraction which gradually links biochemical reactions and genetic information
processing populating the inner layers of the model all the way to the pathologic and physiologic

behaviour exhibited through the higher layers of the model.
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The convergence to a coarse grain model representation of cell state dynamics

from the basic models of mass-action kinetics would, if realizable as hypothesized

so far, provide an effective framework for the integration of multi-scale models of

biological processes. Indeed, such pattern of multi-scale integration can be repli-

cated by linking the states of the cells to the states of their home organs. Hier-

archical Statechart models may prove to be an adequate approach to the realiza-

tion of such integration 29. This model integration would require the definition of

the possible physiological and pathological states of organs (normal, inflamed, in-

fected, etc.), and a model of how the dynamics of cell ensembles lead to specific

organ states. The organs’ states and the information about what may be called the

body’s physiological signature (the levels of circulating hormones, body tempera-

ture, blood pressure, sugar blood level, level of electrolytes, etc.) may provide the

input to a homeostatic regulation model representing the coordinated interaction

of the physiological systems (nervous, cardiovascular, endocrine, hematopoietic, di-

gestive, reproductive, immune, and respiratory) to maintain the healthy state of

the organism. The homeostatic regulation may also be realized using a Statechart

reactive model with outputs acting as feedback control inputs to the modules of

the cell mechanisms as shown in Fig. 4. Deciphering and modeling the interactions

between the various physiological systems and their coordinated actions on DNA

expression and metabolic networks is another item in the long list of biological re-

search challenges. Collaborative research efforts such as the Physiome project will

inevitably be instrumental in leading to scientific advances on this front 67. The

quantitative models resulting from the Physiome projects 68 for various physio-

logical systems and diseases would directly contribute to the structural fabric and

mechanistic processes targeted for realization by the modules of the proposed com-

putational model. One potential application example of the proposed framework is

the study of the antagonistic dynamics between cell proliferation and apoptosis in

cancer, and the exploration of drug-mediated control of their ultimate outcome. For

a highly simplified apoptosis/proliferation model ( drawn principally from Green 69

), cell proliferation is induced by Myc, a transcription factor which can also trigger

apoptosis unless blocked by factors, such as interleukin-2, epidermal growth factor,

and insulin, supplied by neighboring cells. MCL-1 (Myeloid Cell Leukemia sequence

1) is one such anti-apoptotic protein whose degradation by MULE-E3-ubiquitin is

prevented by TCTP ( Translationally Controlled Tumor Protein). On the other

hand TCTP is repressed by p53, itself locked with MDM-2 (Mouse Double Minute

- 2) in a feedback loop of expression and inhibition that prevents any significant

accumulation of neither in normal cells. Furthermore, the tumor suppressor ARF

(inducible by oncogenes) exert another layer of control on apoptosis through MULE-

E3 that targets p53 and MCL-1 for degradation, seemingly inhibiting apoptosis on

one hand and promoting apoptosis on the other! ARF can disrupt the p53-MDM-

2 interaction of p53 leading to the accumulation of this later and the subsequent

repression of TCTP, allowing hence the degradation of MCL-1 and the promotion

of apoptosis. The complexity of interactions involved in the control of apoptosis
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is clearly prohibitive, suggesting hence the existence of an intrinsic difficulty in

making conclusions about potential targets to either promote apoptosis or inhibit

anti-apoptotic pathways in cancerous cells. However, the consideration of the net

effect of these interactions on the balance between apoptosis and proliferation may

make the problem more tractable 69. The proposed framework may provide the

context to enact this insight. The lower levels of the model would be responsible for

the modeling and simulation of the relevant biochemical reactions, gene regulation

and metabolic control using state of the art fine-grain mathematical models, many

of which were mentioned earlier. The information carried by the quantized protein

concentrations is interpreted within the context of cell state dynamics. The cell state

space can be defined in relation to the relative abundance of the involved tumor

suppressor proteins such as p53 and ARF and other determinant proteins such as

the anti-apoptotic protein MCL-1 and the ligase MULE E3. Such definition needs

to be informative in relation to the ultimate outcome (apoptosis or proliferation). In

addition, the defined states must have a reasonable likelihood of being discernable

through experimentation (using imaging technology, markers, etc). One approach

that may cover all of these criteria is to inspect the protein interaction network

described above and define a state for each pathway node that could be implicated

in tipping the balance between apoptosis and proliferation. For example, the com-

petitive action of MULE and MDM2 on p53 would inspire the definition of a state

where a threshold associated with the collective abundance of these proteins has

been reached taking the cell to this state and maintaining it there until the time

at which the contest is resolved. Such resolution could be the abundance of p53

beyond a certain threshold taking the cell to another state where TCTP compete

with MULE for the stability of MCL-1 and so on. The states of the individual cells

inform the organ/tissue state dynamics which would be focused on a tissue/organ

centric interpretation of the physiology/pathology. Here again experimental as well

as clinical data and observations would be the arbiter as to what might be the

most pertinent and discernible states of the tissue vis-a-vis a progression towards

cancer. The algorithmic core of the organ/tissue state transition could simply be

based on the distribution of state occupancy by the individual cells. Other strategies

may be conceived to define the behaviour of an ensemble in relation to the state of

individual cells. However, analytical accessibility and biological plausibility of the

chosen approach should be given prime consideration. The sketchy details raised

in this example are only meant to provide an illustrative highlight of the potential

utility of the proposed framework. Some broad ideas are discussed as to how such

utility might begin to be enacted in tackling complex diseases such as cancer. In

future works, the underlying strategies and concepts of the proposed framework

will be unpacked towards full application. Experimental data is expected to provide

the necessary support to shape the framing of the specific questions such as the

dynamics of apoptosis/proliferation in cancer.
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5. Conclusions and Future Works

Living organisms are viewed as collections of integrated biological regularities that

may be modeled along a resolution hierarchy of knowledge representation to reflect

the nature of their observed complexity. The constraints resulting from the flow of

information and energy involved in the transformation of matter necessary for de-

velopment, reproduction and growth are assumed to make up the organizing force

of living organisms. This assumption inspired the hierarchical model architecture

where metabolic reactions and DNA/RNA information processing mechanisms are

assigned to the lower layers of the model acting as the engine for the information

and energy flow. Hierarchical state feedback and the progressive coarse grain repre-

sentation of information flowing to the upper layers of the model link the internal

model dynamics to its output, which is intended to mirror the living organism’s

observed physiological and pathological behavior. The layered model encapsula-

tion of biological complexity along with the enforcement of a resolution hierarchy

of knowledge representation may lead to a computational realization that is more

accessible to analysis of the causes underlying the emergence of pathological pat-

terns of dynamics and the information pathways critical to robust maintenance of

physiological behaviour under environmental perturbations. Computational model

realizations and the explicit consideration of energy are planned for future works.

In particular, an explicit modeling of the links between gene regulation and the

availability of energy may be explored using control-theoretic approaches. Such

exploration may benefit from control system design methods especially those fo-

cused on the synthesis of control laws under constraints on the amount of energy

available for actuation. In particular, hybrid and multi-scale computational model

realizations (combining strategies such as differential calculus-based methods, state

machines, and Markov chains) will be explored to capture the different modeling

resolutions most adequate for the layers and modules in questions. Attention will

be given to leveraging the modularity emphasized in the framework by opting for

algorithmic realizations targeting a multi-threaded multi-core computing environ-

ment and strengthening as a result the capacity of the model realization to absorb

new research discoveries. A particular consideration will be given to the applica-

tion of control-theoretic concepts such as robustness, stability, and adaptation to

gauge the model’s biological plausibility and provide insight about the relationship

between these properties and pathogenesis. One possible starting point in this di-

rection would be the definition and subsequent analysis of sensitivity, robustness

and adaptation measures of the time-varying dynamics of the physiological state.

In this respect, Omics profiling combined with physiological state monitoring could

be instrumental in model driven reconstruction of the genotype-phenotype chain as

recently reported 70. In particular the dataset resulting from Omics profiling may

be mined to construct physiologic and pathologic behavioral scenarios that would

serve as a system-wide integrated reference behaviour, which may consequently be

used to establish the biological plausibility of model realizations of the proposed
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framework.
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