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     Abstract— The evolutionary dynamics of cancer underlie its near boundless potential for therapeutic resistance, representing the 

greatest challenge in the fight against cancer. These dynamics are driven by the evolving diversity of genetic and epigenetic alterations 

which translate into signaling dysregulations that underpin cancer hallmarks, including the evasion of growth suppression and the 

reprograming of metabolism. Pathway entropy is proposed as a measure that can differentiate between tumors and normal tissue as well 

as shed light on acquired therapeutic resistance. The potential utility of the proposed measure is discussed within the context of lung and 

colorectal cancers.        

  
      Keywords—cancer, signaling, pathway, entropy, resistance.  

I. INTRODUCTION 

      Cancer is a complex disease driven by genetic and epigenetic alterations co-evolving with the tumor microenvironment (TME), 

ultimately shaping the trajectory of disease progression and its response to therapeutic interventions [1]. The ever-expanding 

understanding of the genetic and epigenetic etiology of cancer has been priming the expectation that the development of more 

effective and targeted cancer therapies is at hand. This expectation is further fueled by the increasing affordability of whole genome 

sequencing and tumor omics profiling which provides a strong rational for the pursuit of personalized and precision cancer therapies 

based on patient genetic, epigenetic and metabolomics signatures [2]. Combination therapy has been explored as a promising 

approach to enhance clinical response and limit drug resistance, however more research is needed on how to rationalize treatment 

modalities that combine multiple cancer drugs [3-6]. On the other hand, the evolutionary perspective of cancer, first proposed by 

Nowell [7], suggests that there is an intrinsic barrier to achieving a lasting cure using therapeutic modalities aiming at killing as 

many cancer cells as possible [8]. According to this perspective, selection pressures of cancer therapies, many of which are 

genotoxic, eradicate sensitive cancer cells, leaving the resistant one to proceed and feed the recurrence of a potentially more 

malignant and therapeutically resistant cancer [9].  Recently, high accuracy DNA duplex sequencing of colorectal tumors revealed 

that there does not exist a single DNA base that is not mutated in at least one cancer cell [10]. Such hyper genetic diversity of 

tumors, asserted at diagnosis time, provides a substrate for cancer evolutionary dynamics, leading to a near infinite number of 

potential avenues for therapeutic resistance. Herein lies one of the most critical challenges in the fight against cancer.  

      

     Recent studies have revealed patterns of cancer evolutionary trajectories involving different sets of driver mutations and copy 

number alterations (CNA) affecting different chromosomes, depending on the stage of cancer progression [11-13]. In other words, 

at each stage of cancer evolution, different genetic alterations and hence corresponding signaling pathways are more at play as 

determinants of its progression dynamics. For instance, the evolutionary trajectory of colorectal adenocarcinoma involves early 

initiating genetic alterations which include driver mutations in APC, KRAS, PI3KCA, TP53 and FBXW7 as well as copy number 

alterations such as the deletion of chromosome arm 17p. This is followed in few years after diagnosis, by driver mutations in 

CTNNB1, PCBP1, ACVR2A, B2M, SOX9, TCF7L2, SMAD2, SMAD4, PTEN and CNA affecting multiple chromosomes [11]. 

CNA affecting additional chromosomes are also prevalent in the late stage of cancer evolutionary trajectory [11]. The dynamic 

landscape of dysregulated signaling resulting from the evolving genetic and epigenetic alterations, subject to the selective pressure 

of the TME will ultimately determine tumor progression and its response to treatment. Indeed, it is the confluence of signaling-

pathway-integrated effects of genetic and epigenetic alterations that drives cell death evasion, reprogramed metabolism and 

sustained proliferation [14]. The characterization of signaling dysfunction in cancer would therefore be instrumental to the 

development of an actionable understanding of cancer evolutionary dynamics and to the design of therapeutic strategies that can 

thwart resistance. This will require either the measurement or estimation of the activation states of signaling pathways. In the 

absence of effective, high-throughput protein-based measurement methods, mRNA-based approaches of assessing pathway activity 

have been proposed to support targeted cancer therapies [15]. Although the consideration of signaling activity in precision oncology 

addresses epigenetic alterations [16], the selective focus on pathways targeted by the treatment would also benefit from the 

consideration of the role of signaling-metabolism coupling in determining cancer pathophysiology and therapeutic resistance. New 

approaches would be needed to characterize the dysfunctions of signaling networks in cancer cells and their effects on all cellular 
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processes, including metabolism. Network entropy has been previously used to characterize protein interaction networks. The 

robustness of networks such as protein-protein cell signaling networks was studied using the notion of network entropy [17],  

defined based on Kolmogorov–Sinai entropy [18]. Network entropy is defined on a graph, representing the network, with the 

stochastic probability transition matrix of an assumed Markov process generating information by visiting the graph nodes [17]. 

Network entropy was shown to be a measure of network robustness and a predictor of the evolution of the network’s structure [17]. 

This is particularly relevant to cancer evolutionary dynamics where the rewiring of cell signaling pathways is a driver of cancer 

resilience manifested as therapeutic resistance. Network entropy was applied to signaling networks to discriminate cell 

differentiation state, where the stochastic matrix is estimated using the product of the expression levels of the interacting genes in 

the network, in accordance to the mass-action principle [19]. Local network entropy defined for signaling network nodes was also 

shown to be higher for tumors when compared to normal tissue [20], and predicts cancer drug sensitivity [21]. These and other 

works explored the notion of entropy as a measure with potential applications to the characterization of cancer progression and its 

therapeutic resistance. This article builds on and extend the results of these works with a pathway entropic measure that explicitly 

considers the paths of oncogenic signal transduction, providing hence a concrete model for the characterization of specific signaling 

pathways of interest, such as those considered for targeted therapy. The potential prognostic utility of the proposed measure is 

explored for lung and colorectal cancers using patient data sourced from The Cancer Genome Atlas (TCGA) project.   

II. DYSREGULATION OF SIGNALING PATHWAYS IN CANCER 

     The cell signaling network is represented using a directed graph 𝐷 whose input nodes are receptors of stimuli such as growth 

factors and cytokines. An information or signal transduction path is defined as any directed path that connects two nodes in 𝐷. The 

dysregulation of the cell signaling network is manifested as an aberrant flow of information along the graph paths which serve as 

the backbone of signal transduction between cell stimuli nodes (e.g. growth factor receptors such as EGFR) and the major signaling 

hubs or end-effectors, such as AKT, RB, HIF, and AMPK, for the key cellular processes of growth, cell cycle, and metabolism. 

Signaling nodes such as RB and AMPK, are labelled as end-effectors due to their role as relays of effector actions at the interface 

between distinct cellular pathways such as is the case of AMPK which exert regulatory actions on metabolic enzymes such as 

GLUT and ACC [22]. A signaling pathway 𝑤𝑖  is defined as the set of shortest directed paths on the graph 𝐷 that link a stimuli node 

to a sink/end-effector node 𝑖. We will assume that at any point in time, only one among the 𝑛𝑖 > 0  directed paths of 𝑤𝑖  is an 

oncogenic driver of the signaling pathway 𝑤𝑖 . In other words,  𝑤𝑖  is assumed to take 𝑛𝑖 states corresponding to the distinct possible 

paths through which dominant oncogenic signals are transduced from a stimuli node to the end-effector of the signaling pathway 

under consideration. Let 𝜋𝑗  be the probability that path 𝑗 =  0, … 𝑛𝑖 − 1 is an oncogenic driver.  Pathway entropy for 𝑤𝑖  , 

normalized over the number of paths, is defined as follows: 

  

𝐻𝑖 =  −
1

1 + log (𝑛𝑖)
∑ 𝜋𝑗 log 𝜋𝑗

𝑛𝑖−1

𝑗=0

                             (1) 

 

The defined entropy represents the uncertainty about the knowledge of the oncogenic driver path, reflecting hence the oncogenic 

promiscuity, i.e. rewiring capacity,  of the signaling pathway 𝑤𝑖 . The additional constant value of 1 is used in the normalization 

factor to avoid a zero value for the cases of a single shortest graph path in a pathway. The interpretation of the proposed signaling 

entropy is akin to that assumed in [19]. However, the proposed quantification of signaling dysregulation is instead based on the 

effect of pathway-integrated genetic and epigenetic alterations manifested through the perturbation in mRNA expression of the 

relevant signaling proteins. This particular formulation is motivated by the understanding that signaling dysregulation underpins 

the hallmarks of cancer [14], and is supported by the fact that the selected targeting of specific signaling pathways is the actual 

lever of therapeutic action in precision oncology.  The probability 𝜋𝑗 that a graph path 𝑗 is an oncogenic driver is defined as follows: 

𝜋𝑗 =  ∏ 𝑝𝑘

𝑘∈𝐿𝑗

                                 (2) 

 

Where 𝑝𝑘 is the probability that the 𝑘𝑡ℎ edge of path 𝑗 is dysregulated, where 𝐿𝑗 is the set of graph edges, linking two nodes, in the 

𝑗𝑡ℎ path. The probability of interactions between two signaling proteins 𝑥 and 𝑦 can be approximated, based on the mass-action 

principle, by the product 𝐸𝑥𝐸𝑦 of their respective mRNA expression levels 𝐸𝑥 and 𝐸𝑦 [19]. The dysregulation probability 𝑝𝑘 for a 

tumor sample (i.e. a patient) can therefore be approximated by the change of  𝐸𝑥𝐸𝑦, i.e. ∆(𝐸𝑥𝐸𝑦), relative to gene expression levels 
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in normal tissue, quantifying hence the likelihood of genetic/epigenetic caused altered interactions between the two signaling 

proteins of graph edge 𝑘, as follows:  

 

𝑝𝑘 =
𝐸𝑥(𝐸𝑦 − 𝐸0𝑦

̅̅ ̅̅̅) + 𝐸𝑦(𝐸𝑥 − 𝐸0𝑥
̅̅ ̅̅̅)

𝐸𝑥(𝐸𝑦 + 𝐸0𝑦
̅̅ ̅̅̅) + 𝐸𝑦(𝐸𝑥 + 𝐸0𝑥

̅̅ ̅̅̅)
             (3) 

 

𝐸0𝑥
̅̅ ̅̅̅ and 𝐸0𝑦

̅̅ ̅̅̅ are the mean mRNA expressions of gene 𝑥 and 𝑦 in normal tissue, respectively. The mRNA expression data available 

from the TCGA project often contain a small set of normal tissue samples, justifying the use of mean values for normal mRNA 

expressions. The probability 𝑝𝑘  is estimated as the  “partial” change of the product 𝐸𝑥𝐸𝑦 , normalized using 𝐸𝑥(𝐸𝑦 + 𝐸0𝑦
̅̅ ̅̅̅) +

𝐸𝑦(𝐸𝑥 + 𝐸0𝑥
̅̅ ̅̅̅) to ensure its interpretation as a probability measure. The estimation of 𝑝𝑘  relies on the differential gene mRNA 

expression between tumor samples and normal tissue, reflecting hence the perturbation to protein-protein interaction caused by 

genetic alterations. Furthermore, with the consideration of the possible graph paths for the transduction of signals between stimuli 

and end-effector nodes of signaling pathways, the proposed entropic measure embodies a concrete reflection of the promiscuity of 

oncogenic signaling pathways and their rewiring potential in cancer.      

III. ENTROPIC CHARACTERIZATION OF CANCER SIGNALING DYSREGULATION  

     Despite the multiplicity of intertwined dimensions of cancer adaptive complexity, all cancer types share the common phenotypes 

of robust proliferation and therapeutic resistance. In response to therapeutic interventions, tumors instantiate diverse adaptation 

strategies of resistance fueled by the evolving genetic diversity and epigenetic plasticity of cancer cells and the selection pressures 

of the co-evolving TME. The identification of potential biomarkers of resistance would inform the choice of treatment modalities 

to improve patient outcome and limit treatment toxicity. Given the driver role of dysregulated oncogenic pathways in the hallmarks 

of cancer, entropy is explored as a measure of signaling promiscuity using the cell signaling model of Fig. 1.  The model includes 

a panel of genes (see Table I), selected for their contributions to major oncogenic pathways through their somatic mutations and/or 

copy number variations for different cancer types [23-25].  

 
Table I.  GENE PANEL 

Cellular Pathways Genes 

AMPK PRKAA2 (AMPK), STK11 (LKB1) 

Cell Cycle CCND1, CCNE1, CDKN1A, CDKN1B, CDKN2A, CDKN2B, RB1 (RB) 

Genome Integrity ATM, BRCA1, MDM2, TP53 

Hippo CDH1, YAP1 

Hypoxia HIF-1α (HIF), VHL 

JAK/STAT JAK1, STAT3 

P38/JNK MAPK14 (P38), MAPK8 (JNK) 

NF-χB CHUK, NFKB1, NFKBIA 

PI3K/AKT/MTOR AKT1 (AKT), PIK3CA (PI3K), PTEN, MTOR 

RAS/ERK KRAS, BRAF, MAP2K1 (MEK), MAPK1 (ERK), NFE2L2 (NRF2) 

RTK EGFR, ERBB2, FGFR1, KIT, ALK, MET 

TGF-β SMAD3, SMAD4,TGFBR2, ACVR2A 

Wntb/β-Catenin APC, CTNNB1, DVL2, GSK3B 

Other MYC, NOTCH1, AURKA, JUB, FBXW7, CREBBP, KEAP1, SOX9 

 

 

     The proposed exploration focuses on lung squamous cell carcinoma (LUSC)  and colorectal adenocarcinoma (COADREAD) 

with the consideration of a select subset of driver genes relevant to the evolutionary histories of these cancers [11], and associated 

signaling interactions that are integral to pathways altered in cancer (see Fig. 1), including RTK [26, 27], RAS/ERK[28], P38/JNK 

[29, 30], Genome Integrity (P53-DNA repair) [31], PI3K/AKT [32],  MTOR signaling [33], AMPK [34], NF-χB [35], Hippo [36], 

Wnt/β-Catenin [37, 38], TGF-β [39, 40], JAK/STAT [41], Hypoxia [42] and the cell cycle [43]. In particular, the signaling pathways 

listed in Table II are considered to explore the dysfunction of cell cycle regulation and altered metabolism in cancer. These pathways 

underpin cancer hallmarks of sustained proliferative signaling, evasion of growth suppression and the reprogramming of 

metabolism. Their consideration in this study stems from their relevance to current trends in targeted therapies [44, 45]. In addition, 

the regulation of the cell cycle is under the regulatory control of signaling pathways ending at the cell cycle genes and notably RB 

which is distinguished by its role as the end-effector in the decision for a cell to proliferate or enact apoptosis or senescence [46]. 

On the other hand the consideration of the transduction pathways involving the other selected genes such as APC, KRAS, ALK, 
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EGFR and MET is motivated by the known status of these genes as cancer drivers [23], many of which are targetable by tyrosine 

kinase inhibitors (TKIs) [44, 45]. For the reprogramming of metabolism, AMPK, MYC, HIF, and NFE2L2 are considered for their 

role as regulators of metabolic enzymes such as GLUT, LDH, PDK [22] and G6PD [47], respectively. 

 

 
Figure 1. Cell signaling model 

 
Table II.  ONCOGENIC SIGNALING PATHWAYS 

 Cell Cycle Metabolism  Proliferation 

COADREAD APC → RB ERK → AMPK EGFR → AKT 

MTOR → RB VHL → HIF MET → AKT 

TGFBR2→ RB ERK → HIF ALK → AKT 

LUSC KRAS → RB ERK → AMPK EGFR →AKT 

MTOR→ RB VHL→ HIF MET → AKT 

TGFBR2 → RB BRAF → 

NFE2L2 

ALK → AKT 

 

     Pathway entropies where computed using the TCGA mRNA gene expression data, retrieved using the FireBrowse service [48]. 

The comparisons between pathway entropies of tumor and normal tissue samples are illustrated for LUSC and CODREAD using 

the Boxplots of Figs. 2-5. Signaling pathways are identified by source-sink pairs of signaling proteins separated by an arrow 

indicating the direction of signal flow.   Tumor and normal tissue associated entropies are highlighted using the labels [C] and [N] 

respectively.    
      

     The illustrated results of pathway entropy computations, for the signaling pathways under consideration, show that the proposed 

measure differentiates between tumors and normal tissue. The increase in entropy for the pathways regulating the cell cycle and 

metabolism reflects a higher level of signaling promiscuity that underpin cancer evasion of growth suppression and the 

reprogramming of metabolism, which has been linked to therapeutic resistance [49]. The capacity of pathway entropy to assess the 

promiscuity of any select set of signaling pathways may help guide the design of combination therapies. Indeed, the entropic 

measure of signaling promiscuity may be interpreted as an estimation of the likelihood of pathway rewiring when evaluated for a 

patient following targeted therapy treatment such as EGFR inhibition. 
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Figure 2. Entropies of signaling pathways regulating the cell cycle in colorectal cancer. 

 
Figure 3. Entropies of signaling pathways regulating metabolism in colorectal cancer. 

 
Figure 4. Entropies of signaling pathways regulating the cell cycle in lung cancer. 
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Figure 5. Entropies of signaling pathways regulating metabolism in lung cancer. 

      

Predictive biomarkers for therapy response are available [50]. However, the use of the proposed pathway entropy as a measure of 

signaling promiscuity would shed light on pathway-integrated effects of genetic alterations and would hence supplement these 

biomarkers by identifying pathways with high entropy as potential drivers of therapeutic resistance.  For instance, in the treatment 

of lung cancer, acquired resistance involves MET amplification in approximately 20% of NSCLC (Non-Small Cell Carcinoma) 

patients treated with EGFR TKIs [51]. Entropies of signaling pathways linking receptor tyrosine kinases (RTKs) and AKT, being 

a regulator of the cell cycle, proliferation and survival, may help identify patients that are more likely to benefit from the 

combination of TKIs such as EGFR and MET inhibitors. In particular, the wide interquartile ranges (IQRs) of EGFR-AKT, MET-

AKT and ALK-ATK pathway entropies for lung tumor samples compared to those for normal tissue (see Fig. 6), could be suggestive 

of an inter-patient structural diversity of the oncogenic signaling network. This may be interpreted as an indicator of the potential 

for oncogenic pathway rewiring and hence acquired resistance under therapeutic targeting, which is indeed known to occur for 

NSCLC patients treated with EGFR, MET and ALK TKIs. On the other hand, somatic mutations, copy number variations (CNV), 

and mRNA expression profiles are often found to be prognostic factors, as is the case of MET amplification in NSCLC [51]. 

However, the proposed entropic measure quantifies the pathway-integrated effects of oncogenic alterations, and hence provides a 

pathway-level measure of oncogenic robustness that has a potential utility for treatment decision-making, especially in the selection 

of therapeutic modalities that involve targeting kinases engaged in crosstalk, as is believe to be the case for EGFR and MET[51].  

 

 
Figure 6.  Entropies of select oncogenic signaling pathways targeted by TKIs for lung cancer. 

     The potential utility of pathway entropy to treatment decision making vis-à-vis therapeutic resistance would ultimately need to 

be clinically validated. This will require longitudinal mRNA expression data of patient tumors under treatments. Given the clinical 

unfeasibility of applying repeated biopsy procedures on patient tumors, circulating tumor cells (CTC) and circulating tumor-derived 
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components, such as mRNA, extracted from patient blood, using liquid biopsies [52], may provide a viable alternative for tumor 

gene expression measurements [53], enabling hence the monitoring of pathway entropies before, during and after treatments. Future 

works should also consider the use of signaling models that are dedicated to the specific cancer types based on the correspondingly 

relevant oncogenic pathways as asserted by genome wide studies.      

IV. CONCLUSIONS  

     Pathway entropy is a measure of signaling pathway promiscuity estimated using mRNA expression data. It quantifies pathway-

integrated effects of genetic alterations on signaling in cancer. Using the TCGA mRNA expression data for lung and colorectal 

cancers, pathway entropy is shown to differentiate between tumor and normal tissue samples. The potential prognostic value of the 

proposed measure vis-à-vis acquired resistance to targeted therapy is discussed in light of the quantification of signaling promiscuity 

for a set of signaling pathways whose dysregulation is implicated in the evasion of growth suppression and the reprogramming of 

metabolism in cancer. Future works are needed to investigate the clinical validity of pathway entropy as a prognostic factor of 

therapeutic resistance.  
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