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Abstract: Midland is a service-oriented software infrastructure that enables the 

clustering of arbitrarily large collections of computing resources.  The resulting 

clusters may be integrated to form an open, dynamically configurable 

computational grid system where each cluster defines a self-reliant and independent 

management domain. Web Services make up the primary integration mechanism 

both at the cluster and grid levels respectively. This is complemented by a light 

XML based messaging protocol exclusively used for cluster bound interactions. 

The paper describes Midland’s architecture, and the service-oriented approach 

taken to develop the associated resource management mechanisms. It also includes 

an exposition of the model of service capacity which is one of the enablers of the 

service-centric strategy underlying the cluster management mechanisms. The 

operational performance of Midland is illustrated experimentally in the context of 

a Grid test-bed comprising three clusters.  The experimental results highlight the 

performance of the model of service capacity as well as some aspects of Midland 

operational performance. 
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1. INTRODUCTION 

RID computing systems are large scale distributed networks of aggregated 

computing resources integrated through a decentralized management framework to 

harness a collective computing capability with a target performance and an 

expandable service capacity and diversity. In general, grid systems are built around 

a collection of geographically distributed resource clusters, were each cluster 

constitute a self reliant, independent management domain. This two-tier 

architecture decouples the grid layer from the cluster layer enabling hence the grid 

nodes to apply their chosen policies of resource exploitation and service provision.  

Today, the list of commercial and research products that provide the software 

infrastructure for the management of diverse computing and data resources is 

impressively long [1-7]. Among these systems,  the Globus Toolkit [8]  and 

UNICORE [5] provide the infrastructure necessary for the integration of large scale, 

geographically distributed computational grids.   Both systems enable a single sign-

on access to the grid system based on the X.509 security standard. While UNICORE 

is designed to offer an integrated and uniform access to distributed resources, the 

Globus toolkit allows the development of grid application using Globus services [8, 

9] . The active standardization effort led by the Open Grid Forum (OGF) and other 

forums such as the Organization for the Advancement of Structured Information 

Standards (OASIS), the World Wide Web Consortium (W3C), the Internet 

Engineering Task Force (IETF), and the Distributed Management Task Force 

(DMTF) are providing a considerable impetus to grid computing and its application 

in scientific research and business [10-16]. However, there are persisting challenges 

shared by these initiatives which include the key areas of security, performance 

stability, fault-tolerance, reliability, management and movement of data, assurance 

of Quality of Service (QoS), and accounting. Furthermore, although the grid 

computing community has endorsed the Open Grid Service Architecture (OGSA) 

[17], there is a discord between the current state of focus of many local grid resource 

management systems and the grid level mechanisms that are expected to emerge as 

a result of the implementation of OGSA and other standards such as WS-

Agreements [18].  Indeed, while a non-negligible body of research has been 

dedicated to the management mechanisms such as task and workload management, 

co-scheduling, advanced reservation, and resource brokerage, the focus of many 

local grid resource management systems, commercial and research oriented, tended 

to be devoted to task performance management with little or no attention to the 

provisioning and binding of other resources such as datasets, bandwidth or devises 

[18]. The recently proposed Service Level Agreement (SLA) based framework of 

resource management is a first step towards the correction of this trend [18]. It 

reinforces the widely accepted notion that a service level agreement is an effective 

mechanism to reconcile the consumer’s demand for QoS assurance with the 

provider’s local needs [19]. 

In an effort to research the issues associated with service-oriented grid 

architectures, Midland was developed with underlying models and strategies that 

are inherently service-centric. Web Services are used as the primary integration 

mechanism both within Midland clusters and at the grid level. A novel model is 

utilized to provide a uniform quantification of the hosting nodes’ service capacity. 

The model allows a simplified formulation of the core management mechanisms 

such as service discovery, scheduling, and resource state dissemination. It is also 
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projected to be instrumental in future implementations of SLA agreement-based 

resource management which is expected to become central to the development of 

large scale computational as well as utility grids [18]. 

The rest of the paper is organized as follows. Section 2 highlights some salient 

issues encountered in the application of the grid computing paradigm, and the 

challenges associated with the adoption of service-oriented architectures. Section 3 

describes Midland’s infrastructure and its underlying management mechanisms and 

services. Section 4 discusses experimental results relevant to some aspects of 

Midland’s operational performance with particular attention to the model of service 

capacity. Related works are discussed in Section 5 followed by conclusions given 

in Section 6.  

 

2. Service-Oriented Grid Computing 

Future computational grids are expected to be complex systems that involve 

heterogeneous computing resources; including raw data from sensors, satellites, and 

Supervisory Control and Data Acquisition (SCADA) systems, large repositories of 

data both processed and raw, supercomputers as well as clusters of desktop 

machines, application services, and rich user interfaces to enable visualization and 

analysis (see Fig. 1). The integration of these heterogeneous resources requires a 

convergence of the disciplines of sensing, data management, and computing and 

application services [20]. In order to appreciate the complexity of the issues 

associated with grid computing and its applications to real world problems, consider 

a hypothetical Grid (that we call Water Grid) developed to process large and diverse 

water related datasets that originate from water treatment plants, municipalities, 

conservation authorities, public health units, environment ministries, laboratories, 

and research facilities. Such grid does not only serve as a distributed data 

management system, but it also provides the necessary computing services to 

enable researchers to leverage this data to conduct research on all aspects of water 

quality management and related issues of public health and the environment. The 

grid nodes are clusters that may provide storage as well as compute capacity and 

host various application services such as data mining, simulation, visualization, etc. 

To bring into context the challenges associated with distributed computing on such 

open system we consider the following use case scenario. A researcher developed 

a risk model for drinking water quality and decided to simulate the model for a 

given region of the country using the computing services and the relevant data 

repositories available throughout the Water Grid. The datasets of interest as well as 

the computing services necessary for the execution of the risk model may be 

available from multiple clusters of the grid. In order to satisfy the functional 

behaviour required by the above use case scenario, the grid management 

mechanisms have to locate the datasets in question as well as the application 

services necessary for the execution of the risk model. Subsequently, the data and 

the risk model binaries are staged to the provider node (provider of the application 

services) before the simulation is initiated. Upon completion of the simulation task, 

the results are sent back to the researcher, a copy of which is perhaps catalogued 

and archived locally as a newly created dataset for future use. The operational 

behavior required from the grid computational platform to realize this use case 

scenario is obviously intricate. However, the associated complexity may still be 
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considered moderate with respect to the future sophistication expected from a grid 

environment. For instance, the application services needed for the simulation may 

be hosted by different clusters. This requires co-scheduling and execution flow 

synchronization across a distributed set of providers that needs to take place in the 

face of numerous grid environmental challenges; including the ubiquity of faults, 

the uncertainty on resource state information, the heterogeneity of resources and 

their intermittent participation, the network latency, and the lack of central control. 

 

Our approach to deal with the heterogeneity and diversity of grid resources as well 

as the presence of distinct providers and administrative domains is to use the service 

abstraction in conjunction with a grid-wide uniform quantification model of service 

capacity to enable an efficient selection and exploitation of resources (see Fig. 2). 

The proposed capacity model, detailed in Section 3.5, maps the availability 

indicators associated with a node’s computing and data resources to a single service 

capacity metric that quantifies its aggregated capability to handle the load 

associated with the provision of a class of hosted services. The uniform use of the 

service abstraction in the development of Midland management mechanisms such 

as service discovery, and scheduling paves the way for the future integration of 

Midland clusters into grid systems that are compliant with the WSRF standards 

[21]. Furthermore, the use of a single aggregate measure of service capacity enables 

the development of service discovery strategies that require a low density of data 

exchange. This leads to lower latency and reduced network congestion in 

comparison to strategies that rely on queering large centralized or hierarchical 

resource information repositories of resource attribute-value pairs, whose lack of 

scalability has been well illustrated in the absence of data caching [22].  

Furthermore, the service-centric nature of Midland enables its integration within 

the service supply-demand framework of resource exploitation which is 

increasingly gaining prominence in business application of grid computing [14-16, 

23] 

3. Midland Cluster System 

The common thread that runs through Midland is the uniform service view of all 

resources irrespective of their nature being datasets, documents, compute cycle, 

application services, storage capacity or network bandwidth.  These resources are 

inevitably bound to physical hosts or devices which could be workstations, storage 

servers, laptops, interface devises, management devices, or SCADA systems. The 

Midland system provides a resource management infrastructure through the 

deployment of an agent on each one of these physical resource hosts and devices. 

The collection of agents make up a Midland cluster whose operation is coordinated 

by a single agent designated as the principal. The principal serves as the point of 

interaction with peer clusters in a computational grid (see Fig. 3). The Midland Grid 

Server (MGS) is the underlying software implementation of an agent. MGS is a 

multithreaded pure Java server that can be configured as a simple agent or a 

principal using a set of XML configuration files. A principal node of a Midland 

cluster includes an MGS instance configured as a principal, a database server and a 

Tomcat-Axis web server. In order to provide a reliable operation of the principal 

node, the MGS is deployed on a host distinct from the one used for the Tomcat-

Axis server and the cluster’s database. Consequently other cluster agents may 
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assume the principal role if the current principal succumbs to a fatal failure. An 

agent node includes an MGS instance configured as a simple agent in addition to a 

local resource and load information server. Inter-cluster interactions are enabled 

using Web Services deployed on the Tomcat-Axis server associated with the 

principal node. For intra-cluster interactions, all data intensive communications are 

established using Web Services, while commands and light data messages such as 

status notifications are exchanged using an XML socket based messaging protocol 

called the Midland Messaging Protocol (MMP) to be described later. The Midland 

cluster’s operation is supported by a set of core management services to be 

described in more details in Section 4.  

 

 3.1 Grid Topology 

The grid topology envisaged for the deployment of Midland is a flat network of 

clusters where identity, state and capacity information is selectively exchanged 

among neighbors to supports grid wide management strategies such as service 

discovery and delegation of service request handling (see Fig. 4). In this 

neighborhood-based topology, there are no restrictions imposed on the geographic 

proximity or network distances between two neighbors. However, the challenge 

posed by latency to the adequate operation of tightly coupled grid-enabled 

applications, such as real time simulations, necessitate the choice of a configuration 

that makes an effective use of the underlying network infrastructure. In this respect, 

the chosen grid topology has the properties of a power law network where most 

nodes have few links and few nodes have numerous links, and as a result it may be 

more robust against random failure of the agents  [24, 25]. Furthermore, since the 

inter-cluster interactions are always mediated by the principals, the creation of 

inter-agent overlay networks is avoided, and the problem of excessive traffic 

illustrated for the case of Gnutella networks may be prevented [26]. 

In a Midland-enabled grid, each cluster has the necessary infrastructure to 

schedule as well as handle service requests for which it has a sufficient available 

capacity. It also has the capability to delegate the handling of service requests to 

other clusters. While the exchange of state and capacity information is performed 

regularly among neighbors, establishing a transitory communication link between 

any two nodes is not restricted. This is in fact needed for data transfer between a 

node from which a service request originated and a peer to which such request has 

been delegated for handling. 

The grid topology and the configuration of its nodes are defined using the MGS 

configuration files of the nodes and their agents respectively. The bulk of the 

information included in the MGS configuration file is described using the UML 

diagram of Fig. 5 Each cluster is identified by a grid-wide unique identifier (node-

id) assigned through an out of bound process.  

 

A map is maintained between the node-id and the agent-ip of the principal so as 

to insulate the neighboring clusters from any configuration changes taking place 

within the cluster, such as the assumption of the principal role by a different agent. 

Each cluster maintains the state information of its neighboring peers and its agents 

in the cluster-bound database which is accessible to all its member agents. The 

Statechart of Fig. 6 describes the grid node operational states and the associated 
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transitions during the node’s lifecycle delimited by the join and leave point in time. 

The agent lifecycle is described using an identical set of states except that the target 

domain of membership is the cluster instead of the grid. The join process, initiated 

by the joining node, consists of an exchange of identity information used to update 

the configurations of the future neighbors. The identity information includes the 

node-id and a Web Service endpoint used for the inter-node interaction during the 

join and leave process.  The information used by the joining node to initiate the 

process is obtained out of bound.  

The agent join process is essentially the same as that of a node join. The only 

difference is the assignment of the node-id which in this case is made by the 

principal.  The leave process for a node or an agent consists in no more than setting 

the states of the leaving node or agent to “disabled”. However, the implications on 

the work in progress are critical to the overall performance and robustness of the 

computing platform.  The section on fault-tolerance discusses some of the related 

issues.  

 

3.2 Fault Tolerant Architecture 

In order to assert its role and enable the selection of a successor in case of failure, 

the principal sends a periodic heartbeat signal to all agents in the cluster. The 

process of selecting a new principal (changeover) is initiated as soon as a configured 

number of agents assert the silence of the heartbeat signal. The new principal is 

selected from a priority list predefined based on the computing capacity of the agent 

hosting machines. Since all the agents have access to the cluster state, the 

configuration information, and the priority list, the changeover process consists 

essentially of an update to the map between the cluster node-id and the new 

principal’s agent-ip.  

As to the node and agent leave processes, Midland does not currently have any 

support for work recovery following an unpredictable departing of a node from the 

grid or an agent from the cluster. Instead, if the leave process is initiated during the 

“Active” state, the task or service request handling is rescheduled and restarted.  

The issue of work recovery after failure and unpredictable departure of nodes and 

agents is actively researched in the broader context of fault-tolerant grid computing 

[27]. Upon convergence of these research efforts, the resulting strategies and 

models will be integrated in Midland.    

 

3.3 Midland Messaging Protocol (MMP) 

The MMP protocol relies on a synchronized socket based exchange of the objects 

MMPRequest, and MMPResponse illustrated in Fig.7. These objects identify the 

sender along with a username and a password for simple authentication. The 

MMPRequest is designed to include all the necessary information to reconstruct a 

call to a Java method on the receiving end. The structure of the request object 

includes a command parameter that is mapped to an action to be taken by the 

recipient component (or service), as well as the necessary values of the action’s 

arguments when it applies. The arguments may be primitive Java types or complex 

user defined Java objects that may themselves include other user defined Java 

objects or collections as their property types. In conjunction with the MPP protocol, 
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a scheme is developed to serialize Java objects into XML documents. This XML 

serialization supports the Java HashMap, ArrayList, and arrays. The DataUnit 

object represents the XML body which includes the set of argument values 

associated with the action in question. Each one of the types or class properties used 

within the DataUnit hierarchy is an element (with possible children elements) of 

the XML serialized document.  The serialization approach uses the categorization 

of the Java objects into primitive and complex types. Complex types include user 

defined objects and collections. Each property of the object hierarchy being 

serialized is associated with an object identifier (OID). The basic serialization 

method consists in constructing a directional reference tree of OIDs, where each 

OID references a basic KyObject element that describes the specification of the 

object being serialized. The depth and span of the tree depend on the depth of the 

object’s hierarchy and is always terminated by nodes that represent the properties 

with primitive types.  

 

3.4 Midland Computational Model 

   The computational model addresses the specification format and structure of a 

service request and the task execution process that supports its handling. The model 

restricts the execution of tasks of the same service request to the same cluster to 

simplify the management of the execution process and to avoid the latency that 

would otherwise be incurred from the inter-cluster coordination that would be 

needed if dependent tasks for the same service request are executed on different 

clusters. Future works will analyze the tradeoffs associated with the potential 

relaxation of this restriction. 

A typical use of a Midland cluster within a grid starts with the submission of user 

service request  , , ,sr A S Q    defined as a collection of tasks, each requiring the 

availability of one or more grid services, to be executed in accordance with a 

specified workflow. The user required quality of service Q  may be specified as a 

list of performance metrics such as the “maximum wait time before scheduling” or 

the “time limit before execution start”.   is the required task execution workflow, 

 0 1, ,.., nA a a a is the set of  sr tasks, and  0 1, ,.., mS s s s is the set of required 

grid services. The sr handling process starts with an attempt to schedule the tasks 

on the local cluster in compliance with the required quality of service. If the 

available capacity of the required services is sufficient, the sr tasks are queued for 

local execution, otherwise the execution of the tasks is delegated to a peer cluster 

using various approaches as will be elaborated in section 4.2.  

The management of the task execution workflow is coordinated by the submission 

cluster, i.e. the cluster where the sr originated.  The sr handling lifecycle is 

subdivided into n consecutive phases where each phase corresponds to the 

concurrent execution of a set of component tasks of the sr (see Fig. 8). The 

collection of tasks to be executed in phase i  is dependent on the tasks executed in 

phase 1i   . The ordering of tasks according to their dependence is inferred directly 

from the user specification of the submitted sr .  Different approaches to the 

coordination of the sr  execution were explored. However, after extensive 

experimentation, it became apparent, at least in the case of this developed 

infrastructure, that the coordination of the sr  execution through synchronized 
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interactions was not achievable with an acceptable rate of failure. Some of the fault 

sources such as runtime exceptions where satisfactorily addressed. However, other 

failures such as frequent communication timeouts are often caused by congestion 

and network faults and as such they are difficult to correct especially for the public 

network used for inter-cluster communication. As a result, an asynchronous process 

of workflow coordination is used to achieve a more reliable sr execution. 

Coordination messages such as task state change notifications are persistently 

logged to persistent data stores both at the execution and submission clusters, while 

the initiation of the successive phases is performed through a periodic polling of the 

persisted task states.  

  The message-based asynchronous coordination used in Midland provides 

improved robustness against faults compared to a synchronized approach. 

However, this is achieved at the cost of higher sr  execution overhead. This may be 

acceptable for data mining applications which often include long running tasks. On 

the other hand, the support of real time simulations with low tolerance for high 

latency may require different workflow coordination methods to be investigated.     

 

3.5 Model of Service Capacity 

As stated above, a service request may require for its handling the availability of 

a set of grid services.  Such availability requires more than the assertion that a 

required grid service is indeed deployed on the target hosting environment. In 

particular, the hosting environment has to possess sufficient resources for the 

instantiation of the service and the subsequent invocations of its operations. Since 

the resources of the hosting environment are limited in their levels of availability, 

the maximum number of service requests that may be concurrently handled is finite. 

Consequently at any given time a grid service that might be deployed on a grid node 

may not be available for lack of sufficient resources necessary for its instantiation 

and the execution of its operations.  

Traditionally, computing capacity has been defined in terms of a maximum 

number of slots assigned to computing hosts based on their CPU and RAM 

availabilities. While this may be appropriate for pure compute-cycle jobs, it is 

hardly adequate for complex services that rely on a spectrum of resources which 

may include CPU, Memory, storage capacity, datasets, network bandwidth, 

application software, and others services. This list of base resources may be 

extended to include support infrastructures such as databases, application servers, 

messaging systems, virtual machines such as the Java Virtual Machine, and runtime 

environments such as the .NET framework. In the face of a large set of resources 

that may be required for the handling of a service request, one possible approach to 

discover and select an appropriate service provider would be to query a potentially 

large directory of resource attribute-value pairs. Such multi-dimensional search 

entails a significant complexity of the discovery and selection mechanisms. 

Furthermore, the resource information systems that have been so far devised to 

support detailed enumerations of resource attribute-value pairs are not scalable 

without data caching  [22]. Given these concerns, an alternate approach in the form 

of a service capacity model is developed to provide a quantification of service 

availability based on the aggregate behavior of the resources of the hosting 

environment. Let  0 1 1, ,..., nR r r r   be the set of cluster resources that supports the 
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operation of hosted services denoted by the set  0 1 1, ,..., mS s s s  . Then we define 

the aggregate service capacity ( )C t  of the cluster as follows: 

 
1
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( ) 0il t   is the level at the discrete time t of ir R , and 
(max) 0il   is its all time 

maximum. Since for some resources such as CPU, the availability is expressed as a 

percentage of a maximum level, the entity of relevance for the practical 

implementation of the model is
(max)

( )i

i

l t

l
. Hence we may state for example that the 

RAM and thread availability is 20% and 50% respectively. The weighting factors

0i  specify the relative importance of the various resources in defining the 

aggregate service capacity of the hosting environment. Resources that are more 

critical to the operation of the service category, such as runtime memory, are 

assigned higher weight in the definition of the service capacity.  The actual values 

of these weights are determined through experimental runs for a select service of 

the category being deployed on the hosting environment in question. The 

parameters are tuned to achieve zero capacity for a high sr load, a medium capacity 

for a medium sr load and a high capacity for a low sr load.  The mentioned levels 

of load and capacity are manually estimated by inspecting the response time of the 

hosting environment in reaction to user interaction. For ease of implementation, the 

capacity ( )C t  is scaled up by a factor of a hundred and rounded up to the next 

integer.  

Let ( )L t be the sr load defined as the number of concurrently handled service 

requests at time t . Then the average share of ( )C t needed to handle a single service 

request, that we call servslot, is estimated as follows: 
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Where (0) is set to the estimated average share of ( )C t  consumed by the least 

demanding member of S .  This determination is made through profiling of resource 

consumption for a randomly distributed load of the service in question. The above 

estimation scheme provides a numerically stable computation of the moving 

average value of a servslot.  0 1   is a forgetting factor which may be 

dynamically set to a high value for an   sr distribution with high makespan, and a 

low value for an sr  distribution with low makespan so as to emphasize their 

respective low and fast dynamics of resource consumption. The width M of the 

moving average window is also experimentally tuned to remove excessive 

fluctuation from the estimated value and enable the capture of the stable trend of 
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( )t . Given the above definition of a servslot, the estimated number of service 

requests that can be handled by the hosting environment at time t  is given by: 

 

( )
( )

( )

C t
N t

t
         (3) 

 

The implementation of the above model of service capacity is enabled through a 

periodic monitoring of the levels of resource availability. Aspects of this 

implementation are described in the subsequent sections. In future works, the 

Common Information Model (CIM) [28] , which is likely to be adopted by the OGF, 

will be considered for the representation of the computing resources and their 

availability levels.  

 

4. Cluster Management Services 

An overview of Midland management mechanisms is given in Fig. 9. These 

mechanisms include the following core services:  

 Service Request Submission 

 Scheduling     

 Service Capacity Information Dissemination 

 Resource State and Load Monitoring  

 Task Management 

There are two common threads in the approach to the development of Midland 

core services. First, Web Service Interfaces (WSI) are uniformly used for the 

interactions between peer clusters and partly used for the cluster’s integration. 

Second, persistent storage using relational databases is used for all entities vital to 

the reliable operation of the cluster; including service request specifications, 

resource and load state information, and service capacity information. As a result, 

the core services can be deployed on separate hosts which may provide 

simplifications for failure recovery processes in addition to the potential increase in 

resilience to faults.  

Service discovery is a core service planned to be integrated with Midland. This 

service is not currently used because of the reliance on the capacity information 

disseminated among neighbors. However, different service discovery strategies 

have been explored whereby the distributed network of service registries 

maintained by the clusters is leveraged to yield a scalable performance [29].   

 

 4.1 Service Request Submission 

Service request submission to a Midland cluster requires the pre-packaging of the 

submitted sr using a utility developed for this purpose (see Fig. 10). A service 

request is defined as a collection of tasks (also called jobs) to be executed in 

compliance with a specified flow. The packaged sr submission file includes a 

specification of the task requirements such as the quality of service and the required 

grid services or executables. The packaged sr file may include the relevant data and 
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executable binaries or a URL reference to the repository where they are stored along 

with the necessary access credentials.  

The current Midland design recognizes four classes of quality of service; namely: 

bronze, silver, gold and platinum. The bronze and platinum service classes 

correspond to the least and most stringent requirements respectively.  Although the 

model of quality of service is flexible and open to extension, the current 

implementation of these QoS classes is limited to the consideration of the 

“maximum time before scheduling”, the “maximum time before service handling 

starts”, and “the number of restart after failure”.  

Service requests are submitted through a simple web interface where the sr  file 

is uploaded to the submission cluster. The sr specification is then parsed and the 

user receives an sr  identifier (SRID) used to monitor and track the handling of the 

submitted sr . The data and the binaries are then stored on a secondary data 

repository accessible through a set of web services. All operations of scheduling 

and delegation associated with the service requests are performed using a subset of 

the sr specification. This is to avoid the unnecessary movement of binaries and 

input data before the actual scheduling on the target execution environment. 

Whence a host environment is selected for the handling of the sr , the input data and 

binaries are then appropriately staged. 

 

4.2  Scheduling 

Different scheduling strategies have been explored for a Midland-based grid, 

among them we can cite two strategies that fit in the multi-step scheduling approach 

adopted for Midland and which are addressed in [30, 31]. We will refer to the first 

strategy as Probabilistic Confidence Scheduling (PCS)  [31] while the second 

strategy will be refer to as Entropic Scheduling (ES) [30].  For this chosen multi-

step approach, the scheduling problem is seen as a set of two sub-problems, namely: 

(1) a local scheduling sub-problem; and (2) a delegation sub-problem. For both 

mentioned scheduling schemes, the future availability of local service capacity is 

predicted using a Markov chain model. The difference between the two scheduling 

algorithms lies in the approach to the delegation decision. The PCS algorithm uses 

a confidence model that estimates, based on past inter-cluster interactions, the 

likelihood that a delegation of sr  handling to a given cluster would lead to a 

successful execution of its tasks [31]. The second algorithm focuses on the 

uncertainty of the dissemination of capacity information as a source of ineffective 

scheduling decisions. The Entropy associated with the disseminated capacity 

information is hence used as a measure to guide the delegation decision [30]. The 

confidence model used in the PCS strategy essentially yields an index ( )xy t that 

captures the confidence that cluster x  has vis-à-vis a cluster y  at time t . In its 

simplest form the confidence index is computed as the ratio of the number of sr  

delegations from cluster x to cluster y which lead to successful scheduling over the 

number of sr  delegations received by x from y  within some adjustable window of 

time. In addition to the confidence model, the PCS approach uses a Markov chain 

model of service availability to estimate the probability 
( )

0( )sr

xP t TTS  that cluster 

x  will have sufficient service capacity to meet the requirement of the sr  in question 

within a future window of time TTS (Time-To-Schedule) starting from the 
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submission time 
0t . The TTS is a user specified QoS parameter which quantifies 

the maximum acceptable time delay before scheduling of the submitted sr.  An sr

arriving through submission or delegation at cluster x would be delegated to a peer 

cluster only if
( )

0 0( )sr

xP t TTS p  , where 0p is a threshold set to a value less than 

0.25. In other words a delegation is chosen instead of local queuing only when it is 

estimated with a high degree of certainty that cluster x  will not have a sufficient 

service capacity to handle the sr in the window of time  0 0t t TTS . If an sr is 

to be delegated the target cluster would be the neighboring cluster z  of x associated 

with the highest confidence index among all neighbors ( )Ne x of x . In particular, the 

cluster z  is chosen so that
( )

( ) max ( )xz xz
z Ne x

t t 


 . The process of delegation is 

repeatedly applied following the above strategy until the sr is scheduled or the 

process is aborted through a direct intervention from the user or a user specified 

QoS timeout is reached. For the ES strategy, the state of available capacity for 

hosted services is disseminated among neighboring clusters. In this case the 

decision to delegate an sr  instead of locally queuing it at the current cluster x is 

taken when it is asserted that it is unlikely that the local cluster would have 

sufficient capacity to handle the sr within  0 0t t TTS and that the chosen target 

cluster ( )z Ne x for delegation is associated with the lowest value of the  defined 

Entropy function among the neighbors ( )Ne x of   x  [30] .   

  The multi-step, decentralized scheduling model is adopted in Midland because 

of its scalability and inherent accommodation of the distinct administrative domains 

present in a grid.  Furthermore, the model allows the inclusion of incentives for the 

consumption of closer services before seeking the service availability of distant 

providers at a higher cost of network bandwidth and failure rate. In the current 

implementation of Midland, the scheduler components use a Web Service Interface 

to interact with the SR Database and the service registry (Fig. 9). As a result 

different implementations of the scheduling service may be used with little effect 

on the rest of the infrastructure.  

 

4.3  Service Capacity Information Dissemination 

The function of the service capacity dissemination service is to relay to immediate 

neighbors the capacity and load information associated with its hosted services. The 

actual entities being exchanged include the service name, the capacity ( )C t as 

defined by relation (1), the available number of servslots ( )N t given by equation 

(3), and the sr load ( )L t . This information exchange is performed with a frequency 

comparable to that of the agent’s resource monitoring services. The approach to the 

dissemination of service capacity information is devised to enable the realization of 

an adequate scalability and performance of the dependent management mechanisms 

such as scheduling and service discovery. In particular, consideration was given to 

the following critical issues:  

 

 Scalability of the dissemination strategy 

 Limited network bandwidth 

 Overhead storage of service capacity information 
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 Network and processing latency  

 Uncertainty associated with  disseminated information  

 

The scalability issue is partly addressed through the choice of a grid topology that 

limits the flow of capacity information to pathways established between neighbors 

as mentioned in previous sections. Furthermore, the limited amount of data being 

exchanged requires a modest storage and processing overhead in addition to the 

consequently low bandwidth consumption and overall network and processing 

latency. Concerning the uncertainty on the disseminated service capacity 

information, Midland includes a simple version of a stochastic estimation model 

that has been explored to enable potential consumer clusters to assess the 

uncertainty on the service capacity in light of its stochastically approximated 

dynamics [32]. In this model the dynamics of service capacity is viewed as spanning 

a finite set of discrete states corresponding to defined levels of availability. The 

inter-cluster dissemination of information about the available service capacity 

enables each cluster to maintain a stochastic prediction model about the capacity of 

peer neighboring clusters. In particular, the model enables the estimation of the 

probability 
( , ) ( )x s

iP n  that a service s from cluster x  is in a state i  of availability at 

the discrete time n . One of the simplest forms of the model is based on the 

approximation
( )

( , ) ( , )ˆ ( )
1

s
x s i

i

M n n k
P n

k





, where 

( ) ( , )s

iM n n k is the number of 

instances the service s  has been observed, based on the disseminated capacity 

information, to be in state i within the window  n k n of discrete time. The 

above estimated probability, which accounts for the past capacity information, 

enables a consumer cluster to quantify the level of confidence that it ought to have 

in the accuracy of the capacity information received at any given point in time.   

 

4.4 Resource State and Load Monitoring  

This service involves the agents deployed on the computing hosts and the principal 

that coordinates the operation of the cluster. The monitoring of resource state and 

load at the various agent-managed resource hosts is performed using the Resource 

Load Information Service (RLIS). Currently, Midland supports an implementation 

of RLIS for Windows XP in the form of a Windows Service. Windows Management 

Instrumentation libraries are used to enable the collection of resource state and load 

attributes as well as running tasks’ status [33].  The periodically collected 

information is communicated to the cluster management infrastructure using a Web 

Service Interface. The integration of the Network Weather Service (NWS) is 

considered for the future support of Unix and Linux platforms [34].  

4.5 Task Management 

The task management is performed by a dedicated Execution Manager (XEM) 

deployed as part of the MGS agent. Since MGS is a pure Java server application, 

the support of Windows XP, as the most popular desktop OS, presents some 

challenges. One of these challenges is the fact that all Java executables are 

automatically identified by the OS with a “java” image name. Hence, no distinction 



Service Oriented Computing and Applications - SOCA (2009) 3:109–125 

The original publication is available at www.springerlink.com  

 

 

14 

can be made based on the image name for the various Java tasks initiated by the 

XEM. Furthermore, the Java runtime does not return the OS generated process ID 

that identifies the task being executed. The identification of the task by its process 

ID is critical to its management. Our implementation consists in renaming the 

“java.exe” with a name that includes the Midland generated task ID, then use the 

information supplied by RLIS to map the task ID to the actual OS assigned process 

ID by identifying the presence of the task ID in the image name. This operation 

requires a clean up of the renamed “java.exe” executable as soon as the associated 

task completes or is terminated.  As evident from the above, the RLIS acts also as 

a task status monitor. The support of other operating systems such as Linux and 

UNIX is planned for future works. 

 

5. Experimental Results 

The objectives of the experimental work are to illustrate the operation of Midland 

and to quantitatively characterize the operational performance of a Midland 

managed grid. Given the size of Midland’s infrastructure and the diversity of the 

associated services, a full experimental analysis and characterization of its 

operational performance requires a dedicated article. As a result two aspects are 

selected for treatment in this section; namely: (1) the model of service capacity; and 

(2) the throughput performance of a Midland-enabled grid.  

The operational performance of Midland is illustrated using a grid of three clusters 

configured as immediate neighbors and connected using a 100 Mbps local area 

network. Each cluster comprises of a collection of desktop machines equipped with 

a Pentium 4(2.79 GHZ) processor, 0.5 GBytes of RAM and running Windows XP. 

Each cluster includes an IBM xSeries 345 Server with dual Intel Xeon processor 

(3.2GHz/533MHz front-side bus) and 1GB of RAM. Currently, Midland uses the 

Apache Tomcat 5.5.20 with Axis2-1.1 and MySQL 4.1.12-nt which are hosted by 

the IBM xSeries server nodes. A set of sorting services based on the bubble, 

inversion and selection algorithms are deployed on all three clusters.  The resource 

set considered for the experiments includes the CPU, RAM, Virtual Memory, and 

running threads. The inter-arrival time of the service requests submitted to the 

cluster follows an exponential distribution, while the actual sorting service 

requested is randomly chosen from one of the three possibilities. The size of data 

being sorted is randomly generated using a Gaussian distribution where    and 

designate the mean and the standard deviation respectively. The standard deviation 

provides a mechanism for the generation of an arbitrarily wide or narrow 

distribution of the service request’s makespan. For the reported experiments the 

levels of the considered resources (CPU, RAM, VRAM) are expressed as 

percentage of the all time maximum values. 

In order to illustrate the ability of the proposed model to adequately capture the 

capacity of the hosting environment, a Gaussian distribution of service requests 

with  =30 is used for all three clusters. Figs 11-13 illustrate the service load 

(number of concurrently handled service requests), the service capacity, and the 

actual distribution of the service request’s makespan (running time) for one cluster. 

Similar results were obtained for the other clusters and are hence omitted for the 

sake of conciseness. The correlation between the service load and actual service 

capacity, whereby a high load is associated with low capacity and a low load is 
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accompanied with a high capacity, suggests that the model does indeed reflect the 

capacity of the hosting environment.  Furthermore, the resources’ dynamics of 

availability do not exhibit any pattern of resource starvation for a relatively long 

running experiment (Figs 14-15). This absence of resource starvation indicates a 

healthy regulation of service load that is partly the result of an adequate estimation 

of the available capacity by the model. Indeed, given the random service request 

distribution used for this experiment (Fig. 13), a non satisfactory estimation of the 

capacity would have lead to an overload irrespective of the performance of the 

scheduling mechanism used for the regulation of resource consumption and load. 

The second set of experiments provides a characterization of a Midland-enabled 

grid with respect to throughput for different values of the standard deviation   of 

the service requests’ distribution. For these experiments, clusters may delegate the 

handling of their service requests to neighbors. A delegation is performed if the 

local service capacity is below a threshold of 5%. The cluster with the highest 

available service capacity is selected to handle the service request provided that 

such capacity is higher than 5%. Otherwise the service request is re-queued locally.  

Figs 16-19 show the grid-wide average throughputs and corresponding makespan 

distributions for  =20, and  =40 respectively. The different values of standard 

deviations associated with the size of the sorted data resulted in a widening of the 

service request distribution as well as an increase in the occurrence of instances of 

service requests that have higher makespan as shown in Figs 16, and 18. In the face 

of these visibly random distributions with different degrees of deviations, the grid 

throughput converged towards stable levels after the fluctuation of a relatively short 

transitory period (see Figs 17, and 19). The steady state levels of throughput can be 

correlated to the makespan distributions whereby a lower throughput results from 

longer running tasks of the service requests.  The overall stability and consistent 

throughput performance for random distributions of different deviants of service 

demand are good features of Midland. This is especially important since throughput 

stability has been used as a criteria in comparative analysis of batch scheduling 

systems [35].  

Since this paper is primarily intended to describe some proposed models and 

architectural mechanisms for the design of service-oriented grid management 

infrastructures, more experimental reporting and analysis will be carried out in 

alternate venues to covers other aspects of Midland operational performance. 

 

6. Related Works 

Midland is developed around service-oriented management mechanisms that are 

reliant on a model of uniform service capacity quantification instead of the 

traditional attribute-value based resource information models. As a result, existing 

grid middleware systems such as Globus [8], UNICORE [5], Condor [1], AppleS 

[36], and Legion [4], are related to the research effort reported in this paper but only 

in general terms of their function and in some cases with respect to elements of 

architecture and strategies of management. For example, UNICORE uses standard 

protocols such as SSL over public networks, and socket-to-socket communication 

over trusted intranets. This is similar to Midland where inter-cluster interactions use 

the Simple Object Access Protocol (SOAP) [37], while cluster-bound connectivity 

is established using MMP over sockets. The service-oriented approach to the 
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quantification of resource availability is at the root of the distinction between 

Midland scheduling strategies and other approaches that are based on matching jobs 

to resource hosts with the use of resource description languages such as Globus 

RSL[38]  and Condor ClassAds [1]. In particular, Midland’s use of an aggregated 

service capacity measure leverages the service abstraction to encapsulate resource 

heterogeneity and job requirement diversity enabling hence the avoidance of the 

multi-dimensional search that is required for scheduling based on resource-attribute 

matching of jobs to machines found in batch computing systems such as LSF[39], 

PBS[35] and Condor[40]. Compared to these widely used batch scheduling 

systems, Midland is conceived with a service-centric philosophy to facilitate the 

integration of future virtualized distributed computing environments expected to 

provision services to be consumed based on the required functional behavior and 

QoS and where it will be no longer needed to specify some required configuration 

of the computing platform with specific parameters such as operating systems and 

processor architectures.  

To the best of our knowledge the work reported in  [23, 41] is the only research 

effort that espoused the above notion of service capacity quantification as a means 

to effectively manage resource exploitation within a grid. In [41], a supply-demand 

control system is used to regulate the consumption of services provided by a 

federation of data centers organized as a Utility Grid. The node capacity is 

quantified using two metrics called server share and service share respectively. The 

server share is defined as the maximum load that can be handled by a server 

environment for a given class of services, and the service share is the portion of the 

server share required by a given service. Given the use of a benchmark application 

for the definition of the server share, it is not clear how the model may be extended 

to be applied beyond a single administrative domain.  In contrast, Midland uses a 

dynamically assessed capacity unity (servslot) to avoid the need for benchmarking 

service load which is inevitably difficult to apply in an open grid of distinct 

providers and administrative domains.  

There are other works reported in the literature with a focus that may be deemed 

related to that of the strategies and models underlying  Midland’s infrastructure  

[41-43].  The super-peer model [42] has been originally proposed to organize 

resource consuming clients and a server within a super-peer cluster connected to 

other super-peers so as to achieve a scalable mechanism of resource discovery. This 

model has been adopted in the development of a distributed grid information system 

to avoid the drawbacks of centralized and hierarchical discovery mechanisms [44]. 

The neighborhood-based grid topology enabled by Midland is similar to a super-

peer network in that both topologies are chosen to reduce the effect of latency and 

the bottleneck of centralized resource information systems. However, this 

comparison may not be extended beyond the similarity of the topological models 

since the aim of a super-peer cluster is to enable its client members to find resources 

quickly, whereas a Midland cluster is geared towards the effective exploitation of 

the resources managed by its member agents. 

In [43], a distributed publish-subscribe messaging system implemented through a 

network of event brokers is put forth to enable asynchronous peer interactions of a 

proposed peer-to-peer grid. The broker network may be organized in an arbitrarily 

deep hierarchy with a single broker at each layer serving as a gateway. While the 

scope of this related work is limited to the development of the messaging 

infrastructure, it does along with the work on super-peer networks endorse the 

approach taken in Midland with respect to the choice of a grid topology that is 
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conducive to the minimization of the effect of latency.  

 

 

  

7. Conclusion 

The paper describes Midland, a service oriented management infrastructure for 

resource clusters. This represents an effort towards the development of a grid 

management infrastructure where the diversity of the computing resources being 

exploited is handled through a uniform service view so as to facilitate the future 

implementation of needed mechanisms such as dynamic negotiations of SLAs in 

the face of varying demands. Furthermore, Midland grid management mechanisms 

and services are developed along a service-centric formulation in order to pave the 

way for future compliance with community standards such as the WSRF. The 

experimental results show that the proposed model of service capacity provides a 

satisfactory performance for a realistic grid test-bed driven by a random service 

request distribution. The average throughput of the Midland –enabled grid is shown 

to be equally satisfactory for two different spreads of the service request 

distributions. 
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Figure Captions 

Fig. 1:    The grid is a complex large scale open system with two distinct 

management domains; namely: the local management domain associated 

with the resource owner, and the grid level integration management domain.   

 

Fig.2:     The grid can be viewed as a service supply-demand system regulated by 

an SLA-based resource exploitation mechanism that reconciles the 

consumer’s demand for the assurance of a QoS with the provider’s local 

needs for resource availability and performance. 

 

Fig. 3:   Infrastructure of a Midland-based cluster. 

 

Fig. 4: Grid Neighborhood Topology. 

 

Fig. 5:    UML schema of a Midland cluster configuration file. 

 

Fig. 6:    Midland Node operation’s lifecycle.  

 

Fig. 7:  Overview of the request and response objects of the Midland Messaging 

Protocol. 

 

Fig. 8:  Task dependence and service request’s execution phases.  
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Fig. 9:  Overview of the components and services involved in the implementation 

of the resource management mechanisms and the sr handling process in a 

Midland computing cluster. 

 

Fig. 10: The SrBuilder utility provides an easy to use interface to build the Service 

Request specification.  

 

Fig. 11:  Service Load (number of concurrently handled service requests) for 

=30. 

 

Fig. 12: Available (residual) Service Capacity  =30. 

 

Fig. 13: Distribution of service request Makespan  =30. 

 

Fig. 14: Resource Load for  =30.   

 

Fig. 15: Thread Load for  =30. 

Fig. 16: Distribution of service request Makespan for  =20.  

Fig. 17: Throughput (number of completed service request per minute) for    =20. 

 

Fig. 18: Distribution of service request Makespan for  =40. 

Fig. 19: Throughput (number of completed service request per minute) for    =40. 
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