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Abstract – Computational Grids (CGs) are large scale dynamical networks of geographically 
distributed peer resource clusters. These clusters are independent but cooperating computing systems 
bound by a management framework for the provision of computing services, called Grid Services.  In 
its basic form, the grid scheduling problem consists in finding at least one cluster that has the 
capacity to handle, within the constraints of a specified quality of service, a user service request 
submitted to the CG. Since CGs span distinct management domains, the scheduling process has to be 
decentralized. Furthermore, it has to account for the ubiquitous uncertainty on the state of the CG. In 
this paper, we propose a scalable distributed Entropy-based scheduling approach that utilizes a 
Markov chain model to capture the dynamics of the service capacity state. An entropy-based 
quantification of the uncertainty on the service capacity information is developed and explicitly 
integrated within the proposed grid scheduling approach. The performance of the proposed 
scheduling strategy is validated, through simulation, against a random delegation scheme and a load 
balancing-based scheduling strategy with respect to throughput, exploitation and convergence speed 
respectively.           
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1 Introduction 
 Computational Grids (CGs) are large scale dynamical networks of geographically distributed peer 
resource clusters made up of computing hosts such as desktops, instruments, high performance 
computing clusters, supercomputers, and special computing devices. These clusters are independent 
but cooperating computing systems bound by a management framework for the provision of 
computing services, called Grid Services. The evolution of CGs is fueled by the vision of computing 
as a utility to be sold to interested customers; including firms that maintain complex and costly yet 
underutilized computing infrastructures. With the maturity of CGs, these firms “will outsource their 
computing to specialists (IBM, HP, etc.) and pay for it as they use it, just as they now pay for their 
electricity, gas and water”[1] . In addition to their relevance to business operations, CGs have an 
enormous potential utility for the Grand Challenge Applications such as pharmaceutical drug 
discovery, oil reservoir modeling, and large scale environmental modeling [2-4].  

 In a CG, the resource clusters are usually contributed by distinct providers which have full control 
over the exploitation of the associated computing resources. We will assume that these resources are 
exposed for consumption through a uniform service oriented interface similar to the one specified by 
the Open Grid Service Infrastructure (OGSI) recommendations of the Global Grid Forum (GGF). For 
non-commercial grids, the providers aggregate their resources for the purpose of efficient sharing. 
This is the case for scientific grids such as Grid3 (http://www.ivdgl.org/grid3).  In the case of 
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commercial grids, the providers may enter into agreements to organize their computing resources 
along an economy model to provide commercially viable business services. In both cases, the 
management of a CG spans multiple administrative domains and is vulnerable to the ubiquitous 
uncertainty on the knowledge of the state of resources. This uncertainty is induced by a number of 
environmental factors; including intermittent resource participation, dynamic load, network latency 
and processing delays, and random system failures. In this respect, the grid decision-making processes 
such as scheduling have to be decentralized and ought to account for the uncertainty on the state of the 
grid.  

 In its basic form, the grid scheduling problem consists in finding at least one cluster that has the 
appropriate service capacity to handle, within the constraints of a specified Quality of Service (QoS), a 
user service request submitted to the CG. This formulation is similar to the definition of the scheduling 
problem for processor-array-based computing systems [5]. However, there are many important 
distinctions; including the lack of central control, the unbounded number of computing hosts, the 
uncertainty on the knowledge of resource state, and the large scale geographic distribution of CGs [6]. 
The response to these challenges may take advantage of the rich pool of research on traditional 
scheduling in various application domains such as traditional high performance computing (HPC), and 
distributed computing systems [7-9]. In traditional HPC, scheduling may either be approached from 
the perspective of the application program or from the view of the underlying processing system [5]. 
The perspective of the application program divides the scheduling techniques into static and dynamic 
categories [10-12]. Static scheduling assumes the knowledge, at compile time, of many properties of 
the program, including data dependencies and task processing times [13-16]. The job execution 
process can therefore be modelled using a Direct Acyclic Graph (DAG), where the node weights 
represent the task processing times and the edge weights represent the inter-task dependencies and 
communication times [11]. Dynamic scheduling techniques on the other hand are devised to handle 
programs for which the above assumptions may not always be appropriate [17]. A significant number 
of the these techniques rely on dynamic processor load balancing through “idle-cycle stealing” so as to 
minimize the overall execution time of the parallel program as well as the scheduling overhead. The 
scheduling strategies may also be categorized in relation to the architecture of the system. The 
Bounded Number of Processors category applies to a fully connected cluster of processors where the 
underlying physical network is fast enough to neglect the communication overhead [17]. Efficient 
scheduling can in this case be achieved since the scheduling problem is reduced to the allocation of 
tasks to one of the available processors irrespective of their network location. On the other hand, the 
Arbitrary Number of Processor (APN) scheduling category is more complex. In this case the 
scheduling performance is significantly affected by the underlying topology of the inter-processor 
connectivity and the inter-task communication and synchronization delays[11, 18]. The grid 
scheduling problem share many similarities with dynamic scheduling for the APN category. However, 
while the emphasis in traditional HPC scheduling is on the minimization of the execution time for a 
parallel program, in grid scheduling the focus is on the handling of user requests in compliance with 
their specified QoS in addition to the maximization of grid resource exploitation and the system 
throughput. For most of the above mentioned scheduling strategies, the difficulty is well illustrated by 
the proven NP-completeness of the DAG scheduling variants, to the exception of some special cases 
[7, 11, 14]. The assumptions behind many of the proposed heuristics with polynomial-time complexity  
are in practice not feasible for the open grid environment [19].  In order to address the dynamic load 
and varying resource performance in a CG, many adaptive scheduling methods have been proposed 
[19-35]. For many of these approaches, the resource allocation is based on a prediction model of 
resource performance, application execution behaviour, and load conditions. Often, the focus of the 
prediction is centred around the task start time and task makespan (completion time)  [19, 24, 25]. In 
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AppleS [20], performance driven scheduling strategies based on predefined templates are synthesized 
for specific categories of applications. This custom approach is particularly suited for parameter sweep 
applications such as MCell [36]. In He et al [19] quality of service is used to formulate a strategy that 
relies on a prediction of the task completion time as proposed in [25]. The assumptions made for the 
estimation of the model’s parameters do not reflect the reality of the grid dynamics. Yang et al [37] 
proposed a work allocation scheme whereby less work is assigned to resources with higher expected 
load variance so as to achieve the completion of all the tasks for a given job at roughly the same time 
for all the resources involved in the processing. A time-series based predictor provides the expected 
load and variance [29]. Spooner et al [28] suggests a multi-tier scheduling algorithm where a 
performance model is used to manage the delegation of jobs between tiers.  

Among the works cited above there is a subset that is closely related to the proposed approach [38, 39].   
These strategies are similarly framed within a multi-step scheduling approach and address the 
delegation and the local scheduling phases using different methods. In [39] a hierarchical scheduling 
mechanism views the grid as a collection of independent resource clusters each equipped with a local 
scheduler.  Tasks that can not be locally scheduled at the cluster level are either migrated to 
neighbouring clusters or delegated to a grid scheduler where an appropriate cluster with the required 
resources is sought for the execution of the tasks. The inter-cluster  interaction underlying the 
migration function is performed without the involvement of the grid scheduler and as result may lead 
to improved scalability compared to [38]. However, the need for a central grid scheduler is detrimental 
to the overall scalability of the scheduling approach. In [38], execution time predictions are used in the 
selection of a target execution cluster for parallel jobs. At the cluster level, a genetic algorithm is 
utilized to carry out resource allocation and job assignment so as to minimize a comprehensive 
performance metric that involves makespan, over-deadline and resource idle-time. In addition, a 
cluster load metric is used by the scheduler at the grid layer to balance the load among the various 
clusters. This metric is based on job centric parameters such as the number of running jobs, the sum of 
their execution time, and the total job size. Other scheduling strategies that attempt to deal with the 
dynamic grid environment include those that are economy-centric. These are not the focus of this 
paper, however, for completeness it may be of value to mention that they are built around economic 
considerations such as resource price, utilization budget, and the overall economic utility of resources 
to the consumer [40-43].  

 Many of the surveyed strategies use performance prediction models to account for the dynamic 
grid environmental factors such as the varying resource performance, and the dynamic load conditions.  
However, they do not include an explicit quantification of the uncertainty on the resource availability 
and load information used by the prediction models and the scheduling decision mechanism. 
Furthermore, most of the surveyed works use a grid scheduling layer to coordinate the scheduling 
operation across management domains. This may be detrimental to the scalability of the associated 
scheduling strategies.   In this paper we explore a grid scheduling approach that accounts for the 
dynamical nature of the resource behavior and the effect of the uncertainty associated with the state of 
the grid service capacity information. Motivated by the distributed topology of CGs, we view the grid 
scheduling problem as a set of two sub-problems; namely: (1) a local scheduling sub-problem; and (2) 
a delegation sub-problem. For the local scheduling sub-problem, the cluster that receives the service 
request performs a comparative assessment of local handling versus delegation to a remote cluster. 
The scheduling decision is then synthesized through the determination of the option that would lead to 
a higher likelihood of success in the presence of a quantified uncertainty on the estimated state of the 
grid service capacity. The state estimation and prediction is provided by a Markov chain model, while 
the state uncertainty is quantified using an entropy function. In the above formulation it is assumed 
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that the tasks associated with any service request can be executed on any cluster, provided that the 
required resources are available. The grid architecture adopted in this work is coherent with the 
desirable organization of the grid as a decentralized system of independent providers with distinct 
management domains and usage policies [44]. The resulting scheduling strategy is fully decentralized 
and posses an inherent scalability advantage over many of the surveyed strategies since no scheduler is 
required outside the confine of the independent management domain of a cluster. In addition, the 
proposed approach includes a direct account of the uncertainty on the dynamic state of the grid service 
capacity. To the best of our knowledge we are not aware of any similar treatment of the subject of 
resource state uncertainty in grid scheduling. However, in addition to the cited adaptive strategies 
proposed to deal with the grid environmental factor causing this uncertainty, there are some attempts 
to account for such uncertainty through advanced reservation schemes [45, 46]. These schemes often 
rely on centralized repositories of resource descriptions and state such as Globus MDS [47]. The 
scalability problem associated with a centralized directory and the insufficient attention given to the 
dynamics of the resource state render these deterministic reservation schemes ineffective for the open 
and dynamic grid environment.    

 The paper is organized as follows: Section 2 describes the grid architectural framework. The 
details of the proposed grid scheduling strategy are given in section 3. Section 4 presents the 
simulation results, while section 5 includes a short discussion on open issues and future works. The 
paper is concluded in section 6. 

 

2 Grid Architectural Framework 
 The framework under consideration views the grid as a dynamic federation of resource clusters 
contributed by various organizations. Each cluster constitutes a private management domain. It 
provides a set of grid services assumed to be exposed in a fashion that reflects the basic outlines of the 
OGSI recommendations [48]. Clusters may join or leave the grid at any time without any disruption to 
the grid operation. The effect of this dynamic membership is limited to the configuration of 
neighboring clusters.  Each cluster includes a set of agents that host the offered services (see figure 1). 
One agent, labeled as the Principal, is designated to coordinate inter-cluster operations such as 
dissemination of the availability state of service capacity and the dispatching of delegated service 
requests. The lines linking the Principals define the topology of the grid, i.e. the pathways for the 
information exchange about the capacity of hosted services. This in turn defines the notion of a 
neighbor. Hence, two clusters are considered to be neighbors if and only if there is an information 
pathway linking them as defined above. The resulting topology, has the robustness properties of a 
Power Law network where most nodes have few links and few nodes have numerous links [49, 50]. In 
this topology, that we call Grid Neighborhood (GN) topology, there are no restrictions on the IP 
connectivity between any pair of grid clusters. In fact, it is essential that such connectivity be available 
for the implementation of grid-wide scheduling strategies and service request delegations among peer 
clusters.  Furthermore, we will assume that each resource cluster has the capability to handle service 
requests for which it has the required resources. Clusters are also assumed to have the capability to 
delegate the handling of service requests to other clusters in function of some inter-cluster Service 
Level Agreements (SLAs) [51]. While SLA negotiations and enforcements are not addressed in this 
paper, we will assume the existence of some agreements that govern inter-cluster interactions such as 
the regular exchange of resource state information. Future works may be focused on the integration of 
SLA negotiation as part of the delegation step of the proposed strategy especially as such integration is 
expected to be further facilitated with the upcoming GGF WS-Agreements standard. 
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 The proposed scheduling approach does not make any assumptions on the internal architecture of 
a cluster. However, in order to provide a context for the arguments that follow we will assume that at 
any given time there is one agent configured as the Principal of the cluster (see figure 2). This 
configuration may vary dynamically to provide a higher degree of cluster reliability. The Principal is 
associated, at a minimum, with a scheduler, a user request manager and a service manager. The 
responsibilities of the Principal include the management and allocation of resources within the cluster 
and the discovery of grid services hosted by peer clusters. The Principal is also responsible for the 
dispatching of delegated user service requests to peer clusters. Each agent is equipped with a local 
resource manager and a task execution manager. The resource manager keeps a current account of 
resource load and availability, while the execution manager is responsible for the execution of the 
tasks assigned to the agent. 

3 Entropic Grid Scheduling 
 In light of the emerging Service Oriented Computing (SOC) paradigm [52] and the increasing 
acceptance of the Service Oriented Architecture (SOA) approach to the organization of CGs, a grid 
may be viewed as a large scale service provisioning environment. The provided grid services may 
include compute cycle services, data mining services, data storage services, network bandwidth 
provision, and specialized application services. For the exploitation of grid resources, users submit 
service requests that may require one or more grid services to be available with a sufficient capacity.  
Hence we define a User Service Request (USR) as follows:   
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, 0,..., 1is i m=  is a required grid service and , 0,..., 1ic i m= − is the service capacity required for 
service .  The service capacity is expressed as the number of servslots, where a servslot is defined as 
the unit capacity of the hosting environment to run a single instance of the service in question [53]. It 
represents the aggregated capacity of the collection of software and hardware resources required for 
the successful operation of a single service instance. The resources in question may include CPU slots, 
RAM, special hardware devices, disk space, cache size as well as any required licenses of utility 
software that the service instance may need for its successful operation.   If the service requires for its 
execution a specific Operating System, some processor architecture, or the presence of a Java Virtual 
Machine and possibly a required heap size, then these would be part of the resources attached to a 
servslot. The service handling flowΦ , which may be specified using a state machine, defines the 
execution sequence of the various tasks associated with the handling of the USR. Q  is a set of user 
defined performance metrics which make up the user desired QoS. These metrics may include, for 
example, the maximum wait time before scheduling, and the number of required restart of failed tasks. 
In this paper, the Time-To-Schedule (TTS) is the only considered QoS parameter. It is defined as the 
maximum allowed discrete time interval separating the events of USR submission and the scheduling 
of the last task of the USR respectively. 

is

 The grid scheduling problem can be formulated along the following scenario. A USR is submitted 
to a given cluster (submission cluster), the question then is: what is the collection of clusters that have 
the required service capacity to execute the tasks associated with the USR in compliance with some 
user specified QoS? Our proposed solution is a multi-step scheduling approach applied independently 
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to each grid service required by the USR. Let the sequence of scheduling decisions needed to find a 
cluster that hosts the required grid service  with a sufficient available capacity be defined as follows:  js

{ }
0
, 0,..., 1Dn

j ij i
D d j m

=
= = −                 (2) 

Dn  is a non-negative integer.  Each decision is bound to the target cluster where it is performed. 
The scheduling decision has one of the following outcomes: (O1) the TTS is exceeded; (O2) cluster 

is deemed to be the best cluster that can provide the required service ; (O3) the scheduling task is 
delegated to the best neighboring cluster that can provide the required service . The “best” qualifier 
is assumed in a sense to be defined later in the section. The scheduling process is terminated when 
either (O1) or (O2) is reached. The TTS could be set by the user as part of the USR QoS specification. 
The first outcome implies that the USR can not be scheduled in compliance with the required QoS and 
the entire scheduling operation is aborted. The second outcome implies that the component of the USR 
is deemed to be scheduled and the corresponding cluster is added to the solution set.  For the third 
outcome, the scheduling step results in the delegation of the task handling to a peer cluster. 

ijd x

ijd
x js

js

In this paper, we assume that the required services of the USR can be independently scheduled. In 
other words the selections of the potential providers for the required services of the USR are assumed 
to be performed separately. Furthermore, we assume that all service requests arriving at any cluster 
comply with the authentication and authorization requirements that might be associated with the 
required services in question.  In the absence of such assumption, the proposed model may be 
expanded to account for the security concerns. However, such expansion would need to address the 
issue of service denial. This may be accomplished through a service discovery phase that precedes the 
scheduling operation. The discovery process would compile a list of providers for which the given 
service request is authorized to be handled. This information may then be used to inform the 
scheduling process so as to avoid delegations that otherwise would result in a denial of service.  

 

3.1 Grid Service Capacity Model 
The interplay of intermittent resource participation, resource load dynamics, network latency and 

processing delay and random subsystems’ failures create a ubiquitous uncertainty on the state of the 
grid capacity to handle user requests. In order to account for its dynamics as well as its state 
uncertainty, the capacity of a given service is modeled as a stochastic process{ }, 0,1,2,...nX n =  that 
takes on a finite or countable number of possible values of servslots. The set of possible values of the 
process is the set of non-negative integers{ }0,1,2,... .  The index n represents discrete time. The 
process is said to be in state i  at time n  if nX i= . Let us assume that whenever the process is in state i , 
there exists a constant probability ijP  that the process will next be in state j such that: 

 
{ }1 1 1, ,...,ij n n n nP P X j X i X i X i+ − −= = = = =0 0           (3) 

Assuming that this is true for all and all states , the process under consideration is 
known as a Markov chain [54].  The probabilities  are also called the one-step transition 

0n ≥ 0 1 1, ,..., , ,ni i i i j−

ijP
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probabilities since they are associated with a single increment of the time index variable. Then we can 
define the matrix of one-step transition probabilities  as follows: ijP

00 01

10 11

...

...
. . .

P P
P P

⎛ ⎞
⎜Ρ = ⎜
⎜ ⎟
⎝ ⎠

⎟
⎟         (4) 

Similarly, we can define the matrix of the n-step transition probabilities as follows: 
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The element { }( )n
ij n m mP P X j X+= = i= represents the probability that the service capacity takes a 

value equal to at time  knowing that it took a value of i at time . Each cluster maintains a 
registry of its hosted services. Let be one such service, and let be the total number of events, 

recorded in the time window

j n m+ m
s ( )n

ijl

( ]0 n , where the capacity of has changed from a value i to a value  
according to the cluster’s resource accounting and management process. Then we can estimate the 
one-step transition probabilities at time n  as follows: 

s j

( )
ˆ ( )

n
ij

ij

l
P n

n
=           (6) 

These transition probabilities are maintained in the service registry and updated at every discrete 
moment of time. The above equation can be rewritten in the following recursive form: 

( ) 0
ˆ ˆ( ) 1 . ( 1) .ij ijP n P n nλ λ= − − +    (7) 

1/ nλ = ,  if a transition i occurs at time , otherwise0 1n = j→ n 0 0n = . For the implementation of the 

above relation we start with for all the element of the transition matrix except for , 
which is set to 1, where is the state of high service capacity. Given the estimates of one-step 
transition probabilities, the model can provide an n-step-ahead prediction of a specific service capacity 
state such that: 

ˆ (0) 0ijP = ˆ (0)wwP
w

( )nΡ = Ρn                               (8)  

The above relation is a direct result of the Chapman-Kolmogorov equations [54]. Using (5), (6), (7), 
and (8) it is now possible to predict the service capacity state for any arbitrary future time-step. This 
capability will be used in the next subsection to complete the formulation of the proposed scheduling 
strategy.    

 The cluster bound service registry holds the service capacity information (service capacity state 
and one-step transition probabilities) for the services hosted by the cluster in question and its 
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neighbors respectively. In the case of services hosted by neighboring clusters, the value of  is 
computed based on the information assumed to be regularly disseminated by theses neighbors about 
the current state of their service capacity. Since neighbors disseminate the capacity information only 
about their hosted services, the registry size for the i

0n

th−  cluster is equal to: 

1

iM

i i j
j

RSZ N N u
=

⎛ ⎞
= +⎜
⎝ ⎠

∑ ⎟       (9) 

Where is the required storage space associated with a single service entry which includes the current 
service capacity level and state, the one-step-ahead transition probability matrix, and other identifying 
fields such as the service name, the cluster ID, and the IP address of the cluster’s principal. is the 
number of services hosted by the i cluster, and 

u

iN
th− iM is the number of its peer neighbors. Given the 

above described fields of a service entry, u is estimated to be equal to , where 2(64 )sn Bytes+ sn is the 
number of states of the Markov chain model. Figure 3 illustrates the required storage size of the 
registry as a function of the number of states sn for a cluster with seven neighbors. In practical terms, 
the registry would be implemented using a relational database or an LDAP directory bound to the 
home cluster. Judicious caching of the registry in the Principal’s run-time memory would ensure a 
faster information retrieval. However, since the registry is local to the cluster and exclusively 
accessible to its management mechanisms, even in the absence of caching the queering performance 
would not degrade with the increase of users or gird size as is the case for Globus MDS2 GRIS and 
GIIS [55].   

 

3.2  Entropic Scheduling Strategy 
 Let us assume that at time m a cluster  hosting the service has a number of queued requests for 
this service with a required cumulative capacity of . In addition to the already queued 
requests, an additional request is received for the service s  with a required capacity . In order 
to assess the ability of the cluster to handle the service request before the TTS expiry, we have to 
estimate the probability that the service capacity enters the state (corresponding to the 

h s
0queuec >

0newc >

j queue newc c+  

value) at some time [ ]n m m T∈ + ≠starting from the current state at time , where .T is a non-
negative integer which denotes the actual value of the TTS discrete time interval. This probability is 
denoted as follows: 
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0
Ti

P ≤⎯⎯→
 being the probability that the capacity enters the state in or less steps is not equal to 

which represents the probability that the capacity enters the state in exactly T steps. This last 
may be denoted as . Using this observation, we can compute as follows: 

j T

0

( )T
i jP j

0
Ti

P
⎯⎯→ 0

Ti
P ≤⎯⎯→
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Every term of the above relation represents the probability that the capacity enters the state j in the 
corresponding step on condition that it has not entered such state in all the previous steps. Relation 
(11) can be written in the following compact form: 
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The term is omitted since it is equal to zero for
0

(0)
i jP 0i ≠ . Note that a level of service capacity greater 

than , hosted by a cluster , would also satisfy the requirement of the service request. 
Therefore, the likelihood that there will be a sufficient capacity to handle the request should hence be 
given by the probability

queue newc c+ h

( )
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T h
ji
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that the capacity enters any state ( )h

jΣ ⊂ Σ  within T steps starting 

in . is the set of states associated with a capacity greater than or equal to that associated with 
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j .  is the set of possible states of the service capacity.  For an observer clusterh, we 
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∑
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The first index h refers to the observer cluster where the computation is made, while the second index 
 refers to the service home cluster. With the assumption made earlier that neighboring clusters 

disseminate the capacities of their hosted services, cluster h can estimate, as an observer, the 
likelihood that a neighboring cluster would have a sufficient capacity to handle a delegated request. 
Hence we can generalize relation (13) to quantify the estimated probability by an observer cluster , 
that a peer cluster 

h

x
h

hx∈ℵ  (neighbor or itself) has a sufficient capacity to handle a service request as 
follows: 
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(
{ }( )

( )
0

0 0( ) ( )

, ,

. 1

T x
j

T T
x x

j j

h x i

i j i
k k

P

P P )ζ
ζ

≤

≤ ≤

⎯⎯→Σ

⎯⎯→ ⎯⎯→
∈Σ ∈ Σ −

=

−∑ ∏             (14) 

hℵ is the set of clusters neighboring h in the sense defined in section 2, and { }h h hℵ =ℵ ∪ . is the set 
of states associated with a capacity equal or greater than that of state 

( )x
jΣ

j for the - hosted service. Note 
that when estimating the neighbors’ capabilities, the observer cluster, i.e. h in this case, is only aware 
of the capacity information disseminated by its neighbors. As a result the state 

x

j corresponds to a 
capacity , where is the service capacity of the neighbor at the time of the estimation. The 
explicit mention of the service 

0 newc c+ 0c
s under consideration is omitted in (11)-(14) to reduce cluttering. 

Furthermore, note that the basic transition probabilities used to evaluate (11)-(14) are always 
computed from the perspective of the observer cluster. Given the above discussion, the question then 
is:  (Q1) given a service request submitted to a clusterh, should such request be queued for handling 
in the receiving cluster h or should it be delegated to a neighboring cluster?  It is important to 
remember that such choice is to be performed in the context of a geographically distributed system 
that spans multiple administrative domains. Hence, it should in principal take in consideration the cost 
of network bandwidth and congestion in addition to the lower assurance of QoS that may be expected 
from a remote cluster. These are important issues; however, our primary focus is the effect of the 
service capacity state uncertainty on the grid scheduling process. An expanded elaboration that 
includes the above mentioned issues of network bandwidth and QoS is deferred to another venue.  

( )n
ijP

  Part of our approach to question Q1 is the use of entropy [56] as a performance measure that 
reflect the quality of a scheduling decision that is based on uncertain information about the state of 
service capacity.  There is ample evidence in control theory as well as information theory about the 
general applicability of entropy to dynamical systems [57, 58].  In control theory, equivalence was 
shown between a generalized energy function as a measure of performance of dynamical systems and 
entropy as defined by the second law of thermodynamics [59]. For instance, it was noted that since 
decision making is related to information processing one can make the assumption that it contribute to 
the generation of entropy in the information theoretic sense [57, 60]. Entropy as a performance 
measure was also shown to be applicable and common to both information and feedback control 
theories [57]. In this respect, let , 1, 2,..,nE n nh= be the set of events associated with the 
transitions ( )

0
x

ji k→ ∈Σ , where , and  is the cardinality ofhx∈ℵ hn hℵ .  Assuming that these events are 
mutually exclusive, we can define an entropy function as a measure of uncertainty on the collection 

of these events as follows:  { }
1

hn

n
n

E
=

Ω =∪

( )( ) ( )
0 0

( )
, , , ,

.logT xh j j
h

h
h x i h x i

x
H P P≤ℵ ⎯⎯→Σ ⎯⎯→Σ

∈ℵ

= −∑ T x≤          (15) 

The superscript in  indicates that the uncertainty is estimated from the perspective of cluster h . 
The probabilities are computed using the state information supplied by the neighboring clusters about 
the capacity associated with the hosted service in question. Similarly we define a measure of 

( )
h

hHℵ

s
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uncertainty on the occurrence or nonoccurrence of the transition event for the cluster h as 
follows: 

( )
0

h
ji →Σ

( )( ) ( )
0 0

( )
, , , ,

.logT h
j j

h
h h h i h h i

H P P≤⎯⎯→Σ ⎯⎯→Σ
= − T h≤

h

               (16) 

Now let us consider the subset  such that for all*
hℵ ⊂ℵ *

hz∈ℵ  we have:  

( )( ) ( )
0 0, , , ,

maxT z x
j jh

h z i h x ix
P P≤⎯⎯→Σ ⎯⎯→Σ∈ℵ

= T≤      (17) 

Each element is associated with the maximum probability that the hosted service in question 
will have a capacity that enters one of the states of the set

*
hz∈ℵ

( )z
jΣ . If we let *

hz *∈ℵ be a randomly chosen 
cluster then the proposed delegation heuristic can be described as follows. A delegation to the 
neighboring cluster  is performed if only if the following relations are satisfied: *z

( ) ( *)
0 0, , , *,T h z

j jh h i h z i
P P Pα≤⎯⎯→Σ ⎯⎯→Σ

< ≤ T≤

h

      (18) 

( ) ( )
h

h
hH Hℵ <                    (19) 

In all other cases, the service request is queued locally. Relation (18) ensures that the delegation takes 
place only if the transition to the desired set of solution states is most likely to happen compared to a 
local queuing of the service request. The second relation ensures that such predictive assessment is not 
done in the presence of a higher uncertainty. Indeed, given the shape of the entropy function, relation 
(18) would not be sufficient to yield a delegation decision that is necessarily better than local queuing 
(see figure 4). For example a probability of 0.5 for delegation is not necessarily better for the 
scheduling performance than a probability of 0.25 for local queuing given the higher uncertainty 
associated with the 0.5 probability. In order to avoid the region of high uncertainty, we introduced the 
threshold Pα  which should preferably be chosen to be greater than 0.5. 

For the considered single service USR, the scheduling sequence given in (2) reduces to { } 0
Dn

i i
D d

=
= . 

Given the above delegation strategy, the decisions are synthesized using the proposed entropic grid 
scheduling heuristic illustrated using the UML activity diagram of figure 5. Because a delegation is 
more costly (network bandwidth, congestion etc…), it is allowed only if: (1) it is estimated that the 
target neighboring cluster is more likely to have a sufficient service capacity compared to the 
receiving cluster where the scheduling decision is being made; (2) the uncertainty associated with the 
information used to make the determination in (1) is lower than that associated with the prediction 
information about the future state of the locally hosted instances of the service. Note that due to the 
use of the TTS limit to terminate the scheduling process, the sequence   is always finite. If the TTS 
limit is not exceeded, the scheduling sequence would consist of 

id

D
Dn  delegations and a single final 

decision to locally schedule the service request.   
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4 Simulation Results 
 The Midland Grid Emulator developed by the author was used for the simulation of the proposed 
scheduling approach (see figure 6). The emulated grid may be configured for an arbitrary number of 
clusters. The inter-arrival time of USRs at the various clusters is simulated using a Poisson process for 
the first set of simulations while a Pareto distribution is used to simulate a bursty USR load for the 
second set of simulations. For the reported simulation results, the USRs consist of a single required 
grid service with a randomly generated required capacity. The duration of the execution time 
necessary for the handling of a USR is also simulated using a Poisson process.  

One of the potential commercial advantages of a grid is the ability to construct an open computing 
system where new resources can be added as needed in order to handle increased user load or more 
computationally demanding applications. The realization of this advantage relies critically on the 
scalability of the decision-making mechanisms such as service discovery, scheduling and load 
balancing. In concrete terms, the scheduling strategy is said to be scalable if an increase in the grid 
size does not result in a drastic degradation of the grid performance as embodied by the most pivotal 
performance indicators such as response time, throughput, and resource exploitation.  In order to 
quantify these indicators we define three corresponding performance metrics; namely: 

1

1 Rn

i
iR

v nhops
n =

= ∑           (20) 

H

R

n
n

µ =                (21) 

. US

DS

n
n

ϕ µ=              (22)  

 is the grid-wide average number of hops per successful scheduling decision. v µ is the scheduling 
throughput rate, and ϕ is the resource exploitation rate.   is the total grid-wide number of service 
requests, and 

Rn

Hn is the number of handled service requests. is the number of hops before the 
 service request was successfully scheduled. 

inhops
i th− DSn  is the grid-wide total number of deployed 
instances for a given service, and   is the grid-wide total number of used instances of the same 
service. The exploitation ratio is normalized using the throughput in order to reflect the reality that for 
the same simulation time there are more service requests generated in the case of random delegation 
because of the smaller processing overhead of the Midland Grid Emulator. Using these defined 
performance metrics, the performance of the proposed scheduling strategy is illustrated through a 
comparison against two different scheduling strategy; namely: (1) a scheduling scheme based on 
random delegation (see figure 7-9); and an adaptive scheme based on dynamic load balancing (see 
figure 10-15).  

USn

In the first set of simulations, the delegation for the random scheduling scheme is made to a randomly 
selected cluster that is believed to have the required service capacity at the time of the delegation 
decision according to the capacity information disseminated among neighbors. The simulation results 
clearly illustrate that the proposed entropy-based scheduling outperforms the random-based 
delegation. The simulated grid environment had the exact same configuration for both scheduling 
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strategies. This includes the service request distributions as well as the hosted resource distributions. 
Both strategies are multi-tier scheduling approaches where the service request is either handled at the 
submission cluster or delegated to a peer cluster if the service capacity of the submission cluster is 
inadequate. The delegation process is recursively applied until a cluster with the sufficient service 
capacity is found or the TTS timeout is reached. The main distinction between the proposed entropy-
based scheduling algorithm and the random delegation is in the choice of the next peer cluster 
designated to handle the service request. In this respect we attribute the relative superior performance 
of the proposed entropic scheduling approach to the quantification of the uncertainty on the 
information about the state of service capacity. With the use of the quantified uncertainty, the rate of 
rejection of delegated service requests due to exceeded TTS limit is reduced. Hence the throughput for 
the entropic scheduling is found to be about 100% higher than that for random delegation (see figure 
7). For the same service request distributions, and grid resource distributions, the resource exploitation 
of the proposed algorithm not only outperforms the random delegation, but was also maintained 
around the 80% level as the grid size is increased to 1000 clusters (see figure 9). Under the same grid 
environmental conditions, the random delegation resulted in a dramatic decrease of the resource 
exploitation (see figure 9). The convergence speed was also far better for the proposed algorithm 
compared to the random delegation (see figure 8). In fact, the simulation results of figure 8 do not 
express the full story because the number of hops is computed only for the delegations that resulted in 
a service request handling within the TTS time limit. Indeed, given the high rejection rate (low 
throughput) for the random delegation, the performance differential between the entropic scheduling 
and random delegation would in reality be more significant if we included the delegations that never 
converged within the TTS limit.  The other clear advantage of the proposed entropic scheduling 
algorithm is its scalability. All three defined performance metrics show a relatively stable level as the 
grid size is increased from 25 to 1000 clusters (figures 7-9).  

It is important to note that what we have labeled as a random delegation is in fact a scheduling strategy 
that relies on the choice of a target cluster from a legitimate set of clusters that are all deemed 
adequate for the handling of the service request as far as it can be determined from the propagated 
resource state information at the time of the delegation decision. In fact this is one of the most widely 
used scheduling approaches in commercial schedulers such as LSF [61].  Hence, we consider such 
strategy as a legitimate representative of any scheduling scheme that utilizes the currently observed 
grid resource state information without any consideration for the associated uncertainty. However, in 
order to further illustrate the performance of the proposed strategy, we run a second set of simulations 
driven by a bursty request submission process, where the request inter-arrival time follows a Poisson 
process while the number of simultaneously arriving service requests is governed by a Pareto process. 
The arrival Poisson rate is different for each cluster and is randomly chosen.  The range and shape of 
the Pareto process are set to 10 and 2 respectively for all clusters so as to provide an equalized input 
load from all submission points of the grid. For this simulation, the proposed strategy is compared to 
an adaptive scheduling scheme that we call Adaptive Load Scheduling (ALS). Similarly to the 
proposed strategy, ALS uses a multi-step scheduling framework where a service request is scheduled 
locally if a sufficient service capacity is available otherwise it  is delegated to the neighboring peer 
cluster with the lowest load among all neighbors of the cluster currently processing the service 
request. The load is defined here as the ratio between the used and the total capacity for the hosted 
service in question. The ALS strategy has much in common with the load balancing approach used in 
the adaptive scheduling scheme proposed in [38]. However, instead of making use of a grid scheduler 
to perform the load balancing, ALS utilizes a delegation strategy based on disseminated load 
information among neighbors. The common use of the peer-to-peer delegation framework allows a 
more appropriate comparison between the Entropic and the ALS strategies. The simulations are 
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conduct for balanced and unbalanced grid resource distributions. For an unbalanced distribution, the 
grid clusters are configured to host randomly chosen set of services with randomly generated values of 
respective service capacities. For a balanced distribution all grid clusters are configured to have the 
same services with the same service capacity levels. The results of the simulations show that all three 
metrics maintain a relatively stable level as the grid size increases for both compared strategies (see 
figures 10-15). This illustrates the expected good scalability of both methods since they share the same 
decentralized and neighborhood-based delegation mechanism. Both strategies yield a comparable 
good performance with respect to throughput and exploitation levels for both balanced and unbalanced 
grid resource distributions. This similar performance may be explained by the fact that the compared 
strategies utilize, within the same neighborhood delegation framework, two “conjugate” exploitation 
state indicators; namely: available service capacity (supply) and service load (demand). The implied 
equivalence between these two exploitation variables is meant only in the sense that both load and 
capacity availability may be used to build an effective resource management mechanism that 
maximizes exploitation and throughput. The two strategies diverge in their performance vis-à-vis the 
average number of hops, where the entropic scheduling approach outperforms ALS (see figures 10 and 
13).    While both strategies yield a satisfactory resource exploitation, the entropic approach achieves 
this goal at a lower cost (number of hops) than ALS. This may be explained by the fact that the 
prediction of future service capacity and the quantified uncertainty are used in the proposed approach 
with a bias favoring local queuing so as to encourage the consumption of resources that are closer to 
the submission cluster. As result, the cumulative effect of this bias throughout the delegation chain 
leads to a provider cluster that is closer to the submission cluster than would otherwise be possible. On 
the other hand, the delegation in ALS relies on a one step-ahead prediction of the loads associated with 
the cluster where the scheduling step is being taken and its neighbors respectively. The request is 
delegated to a peer whenever the current scheduling cluster is estimated to have a higher load than its 
neighbors, resulting hence in a higher number of average hops. Equipping ALS with a different load 
prediction may reduce the average number of hops. However, the entropic approach would still have 
an advantage, at least conceptually, with respect to the fact that a many-step-ahead prediction of 
service capacity is provided along with a quantification of the uncertainty associated with the very 
information being utilized to make the prediction. The lower average number of hops for the balanced 
resource configuration compared to the unbalanced configuration is expected (figures 10 and 13). This 
is because the uniformly available service capacity throughout the grid translates into a diminished 
incentive for request delegations since the local and remote exploitation patterns are likely to converge 
to similar equilibrium points given the similar USR load distribution used for all clusters. It should be 
mentioned that a lower average number of hops may not necessarily translate in a higher throughput. 
Indeed, a service request may be handled after few hops but separated by longer pending periods of 
time between delegations, while another service request may be handled after many hops with smaller 
pending periods of time. This may be the reason behind the difference in the average number of hops 
of the entropic and the ALS strategies while yielding similar resource exploitation results.   

The use of a bursty USR load distribution resulted in an increase of the average number of hops for the 
proposed scheduling strategy (figures 8, 10, and 13). This is expected given the highly dynamic nature 
of service capacity induced by the combination of a Poisson distribution for the request inter-arrival 
time and the Pareto distribution for the simultaneously arriving number of service requests. 
Nevertheless, the scalability advantage illustrated for the Poisson USR load still holds for the Pareto 
USR load. Furthermore, the overall performance of the entropic scheduling approach is illustrated to 
perform equally well or better compared to the load balancing ALS approach. This is facilitated 
through an experimental widening of the capacity intervals associated with the states of the Markov 
chain so as to filter the high frequency changes of the service capacity levels while maintaining an 
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acceptable prediction. While we have illustrated the encouraging performance under a bursty user 
load, other related issues may be considered in future works; including the finite size of the 
submission queues and the associated issue of service request loss that may result from bursty USR 
load distributions.    

         

5 Discussion and Future Works 

The scientific and commercial viability of the grid computing paradigm requires a comprehensive 
approach to a number of critical issues, in particular: the ubiquitous uncertainty, the distribution of the 
grid management framework, and the scalability of the exploitation and control mechanisms. In this 
respect, the synthesis of the proposed scheduling approach is systematically developed to take into 
account these critical issues. Starting from the necessity for a distributed management and control 
framework, the proposed scheduling approach is designed to be fully decentralized. The delegation to 
neighboring clusters encourages the use of the grid resources that are closer to the submission point. 
This has been suggested to result in a more efficient and cost effective use of the underlying network 
infrastructure [61]. With the assumed topology of the grid, the exchange of service capacity 
information is limited to inter-neighbor pathways. This, we suggest, induces an improved scalability of 
the scheduling approach since immediate neighbors are privileged with the knowledge of the service 
capacity state information to the exclusion of other peers. Such advantage is highly desirable since 
scalability is a critical performance indicator that ranks high in importance for the practical feasibility 
of grid decision making strategies; including scheduling.  The network of distributed service registries 
needed to support the proposed scheduling approach is more scalable compared to Globus-MDS2. In 
fact, it was shown that both MDS2 GRIS and GIIS of the Globus Toolkit may maintain a good 
scalability only if data caching is used, otherwise the performance degrades dramatically with the 
increase in the number of users [55]. Such caching share significant similarities with the distributed 
cluster bound service registries considered in this paper. The second contribution of this work is the 
proposed theoretical formulation of an uncertainty model of the service capacity state. This uncertainty 
model was illustrated to yield a very encouraging performance with respect to throughput, exploitation 
and convergence speed when compared to random delegation and adaptive load balancing approaches. 
We believe that the development of this uncertainty model on the service capacity and its integration 
in the scheduling strategy is not only novel but is also of critical importance to the grid computing 
paradigm. This is because addressing the fundamental issue of uncertainty is by far one of the most 
decisive challenges to the success of any management or control framework applied to large scale 
dynamical systems such as computational grids.     

The extra storage overhead necessary for the maintenance of the transition probabilities associated 
with the Markov chain model may require future attention. As shown in section 3.1, the size of the 
matrices of the one-step transition probabilities is dependent on the number of states associated with 
the service capacity. One possible approach to limit the size of these matrices is to associate the states 
with disjoint intervals of capacity values. The width of these intervals may be appropriately chosen to 
minimize the registry storage size and achieve an appropriate filtering of the fast changes that may be 
caused by bursty request arrivals.  However, such reduction in resolution of the model would have to 
be evaluated in the context of a tradeoff between the storage size of the service registry, the sensitivity 
to the capacity changes and the performance of the scheduling process. Another issue that may be 
considered in future works is the assurance of request handling within the specified TTS. The 
proposed strategy has a built in process of compliance with the TTS requirement through the selection 
of a cluster that is predicted to have a sufficient capacity within the specified TTS. However, a more 
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dynamic assurance may be considered in future works whereby requests that are estimated at risk of 
violating the TTS requirement are given a higher priority of handling. Such assurance would have to 
consider the tradeoff between network congestion and request blocking since a long TTS may lead to 
less blocking of service requests but more network traffic while a low TTS may lead to more blocking 
but less congestion. 

 

6 Conclusions 
 The paper presents a decentralized grid scheduling approach that relies on a Markov chain based 
estimation model of the service state capacity and a novel entropy-based quantification model of the 
related uncertainty. The proposed approach is illustrated to have a scalability advantage in the sense 
that an increase in the size of the grid does not negatively impact the scheduling performance in any 
significant fashion. Furthermore, the performance of the entropy-based scheduling approach is shown 
to perform well compared to two different scheduling strategies with respect to throughput, 
exploitation and convergence speed. The proposed approach does however require an extra storage 
capacity at the cluster level to maintain the dynamical model of service capacity. This, we conjecture, 
can in practice be satisfactorily addressed through a discretization of the service capacity range into a 
sufficiently small set of states.  
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Figure 1: The grid as a federation of resource clusters. 
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Figure 2: Cluster Infrastructure.  
 

 

 

 

 

 

 

 

Page 18 of 33 



 
Journal of Grid Computing, vol. 4, no. 4, 2006, pp. 373-394. 

The original publication is available at www.springerlink.com 

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

Number of States

Re
gi

st
ry

 S
to

ra
ge

 S
iz

e 
(M

eg
ab

yt
es

)

 

 
Figure 3: Storage size of the service registry versus the number of capacity states.  
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Figure 4: Profile of the Entropy function. 
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Figure 5: Summary of the Entropic grid scheduling heuristic. 
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Figure 6: The Midland Grid Emulator. 
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Figure 7: Average throughput rate as a function of the grid size for the random delegation and entropic scheduling 
strategies respectively.  
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Figure 8: Average number of hops as a function of the grid size for the random delegation and entropic scheduling 
strategies respectively.  
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Figure 9: Average exploitation as a function of the grid size for the random delegation and entropic scheduling strategies 
respectively.  
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Figure 10: Average number of hops as a function of the grid size for the ALS (*) and entropic scheduling strategies 
respectively in the case of unbalanced grid resource distribution.  
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Figure 11: Average throughput rate as a function of the grid size for the ALS (*) and entropic scheduling strategies 
respectively in the case of unbalanced grid resource distribution. 
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Figure 12: Average exploitation as a function of the grid size for the ALS (*) and entropic scheduling strategies 
respectively in the case of unbalanced grid resource distribution. 
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Figure 13: Average number of hops as a function of the grid size for the ALS (*) and entropic scheduling strategies 
respectively in the case of balanced grid resource distribution.  
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Figure 14: Average throughput rate as a function of the grid size for the ALS(*) and entropic scheduling strategies 
respectively in the case of balanced grid resource distribution. 
 
 

Page 28 of 33 



 
Journal of Grid Computing, vol. 4, no. 4, 2006, pp. 373-394. 

The original publication is available at www.springerlink.com 

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CG Size

A
ve

ra
ge

 E
xp

lo
ita

tio
n 

Ra
te

 

Figure 15: Average exploitation as a function of the grid size for the ALS (*) and entropic scheduling strategies 
respectively in the case of balanced grid resource distribution. 
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