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Abstract — Computational Grids (CGs) are large scale dynamical networks of geographically
distributed peer resource clusters. These clusters are independent but cooperating computing systems
bound by a management framework for the provision of computing services, called Grid Services. In
its basic form, the grid scheduling problem consists in finding at least one cluster that has the
capacity to handle, within the constraints of a specified quality of service, a user service request
submitted to the CG. Since CGs span distinct management domains, the scheduling process has to be
decentralized. Furthermore, it has to account for the ubiquitous uncertainty on the state of the CG. In
this paper, we propose a scalable distributed Entropy-based scheduling approach that utilizes a
Markov chain model to capture the dynamics of the service capacity state. An entropy-based
quantification of the uncertainty on the service capacity information is developed and explicitly
integrated within the proposed grid scheduling approach. The performance of the proposed
scheduling strategy is validated, through simulation, against a random delegation scheme and a load
balancing-based scheduling strategy with respect to throughput, exploitation and convergence speed
respectively.
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1 Introduction

Computational Grids (CGs) are large scale dynamical networks of geographically distributed peer
resource clusters made up of computing hosts such as desktops, instruments, high performance
computing clusters, supercomputers, and special computing devices. These clusters are independent
but cooperating computing systems bound by a management framework for the provision of
computing services, called Grid Services. The evolution of CGs is fueled by the vision of computing
as a utility to be sold to interested customers; including firms that maintain complex and costly yet
underutilized computing infrastructures. With the maturity of CGs, these firms “will outsource their
computing to specialists (IBM, HP, etc.) and pay for it as they use it, just as they now pay for their
electricity, gas and water”[1] . In addition to their relevance to business operations, CGs have an
enormous potential utility for the Grand Challenge Applications such as pharmaceutical drug
discovery, oil reservoir modeling, and large scale environmental modeling [2-4].

In a CG, the resource clusters are usually contributed by distinct providers which have full control
over the exploitation of the associated computing resources. We will assume that these resources are
exposed for consumption through a uniform service oriented interface similar to the one specified by
the Open Grid Service Infrastructure (OGSI) recommendations of the Global Grid Forum (GGF). For
non-commercial grids, the providers aggregate their resources for the purpose of efficient sharing.
This is the case for scientific grids such as Grid3 (http://www.ivdgl.org/grid3). In the case of
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commercial grids, the providers may enter into agreements to organize their computing resources
along an economy model to provide commercially viable business services. In both cases, the
management of a CG spans multiple administrative domains and is vulnerable to the ubiquitous
uncertainty on the knowledge of the state of resources. This uncertainty is induced by a number of
environmental factors; including intermittent resource participation, dynamic load, network latency
and processing delays, and random system failures. In this respect, the grid decision-making processes
such as scheduling have to be decentralized and ought to account for the uncertainty on the state of the
grid.

In its basic form, the grid scheduling problem consists in finding at least one cluster that has the
appropriate service capacity to handle, within the constraints of a specified Quality of Service (QoS), a
user service request submitted to the CG. This formulation is similar to the definition of the scheduling
problem for processor-array-based computing systems [5]. However, there are many important
distinctions; including the lack of central control, the unbounded number of computing hosts, the
uncertainty on the knowledge of resource state, and the large scale geographic distribution of CGs [6].
The response to these challenges may take advantage of the rich pool of research on traditional
scheduling in various application domains such as traditional high performance computing (HPC), and
distributed computing systems [7-9]. In traditional HPC, scheduling may either be approached from
the perspective of the application program or from the view of the underlying processing system [5].
The perspective of the application program divides the scheduling techniques into static and dynamic
categories [10-12]. Static scheduling assumes the knowledge, at compile time, of many properties of
the program, including data dependencies and task processing times [13-16]. The job execution
process can therefore be modelled using a Direct Acyclic Graph (DAG), where the node weights
represent the task processing times and the edge weights represent the inter-task dependencies and
communication times [11]. Dynamic scheduling techniques on the other hand are devised to handle
programs for which the above assumptions may not always be appropriate [17]. A significant number
of the these techniques rely on dynamic processor load balancing through “idle-cycle stealing” so as to
minimize the overall execution time of the parallel program as well as the scheduling overhead. The
scheduling strategies may also be categorized in relation to the architecture of the system. The
Bounded Number of Processors category applies to a fully connected cluster of processors where the
underlying physical network is fast enough to neglect the communication overhead [17]. Efficient
scheduling can in this case be achieved since the scheduling problem is reduced to the allocation of
tasks to one of the available processors irrespective of their network location. On the other hand, the
Arbitrary Number of Processor (APN) scheduling category is more complex. In this case the
scheduling performance is significantly affected by the underlying topology of the inter-processor
connectivity and the inter-task communication and synchronization delays[11, 18]. The grid
scheduling problem share many similarities with dynamic scheduling for the APN category. However,
while the emphasis in traditional HPC scheduling is on the minimization of the execution time for a
parallel program, in grid scheduling the focus is on the handling of user requests in compliance with
their specified QoS in addition to the maximization of grid resource exploitation and the system
throughput. For most of the above mentioned scheduling strategies, the difficulty is well illustrated by
the proven NP-completeness of the DAG scheduling variants, to the exception of some special cases
[7, 11, 14]. The assumptions behind many of the proposed heuristics with polynomial-time complexity
are in practice not feasible for the open grid environment [19]. In order to address the dynamic load
and varying resource performance in a CG, many adaptive scheduling methods have been proposed
[19-35]. For many of these approaches, the resource allocation is based on a prediction model of
resource performance, application execution behaviour, and load conditions. Often, the focus of the
prediction is centred around the task start time and task makespan (completion time) [19, 24, 25]. In
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AppleS [20], performance driven scheduling strategies based on predefined templates are synthesized
for specific categories of applications. This custom approach is particularly suited for parameter sweep
applications such as MCell [36]. In He et al [19] quality of service is used to formulate a strategy that
relies on a prediction of the task completion time as proposed in [25]. The assumptions made for the
estimation of the model’s parameters do not reflect the reality of the grid dynamics. Yang et al [37]
proposed a work allocation scheme whereby less work is assigned to resources with higher expected
load variance so as to achieve the completion of all the tasks for a given job at roughly the same time
for all the resources involved in the processing. A time-series based predictor provides the expected
load and variance [29]. Spooner et al [28] suggests a multi-tier scheduling algorithm where a
performance model is used to manage the delegation of jobs between tiers.

Among the works cited above there is a subset that is closely related to the proposed approach [38, 39].
These strategies are similarly framed within a multi-step scheduling approach and address the
delegation and the local scheduling phases using different methods. In [39] a hierarchical scheduling
mechanism views the grid as a collection of independent resource clusters each equipped with a local
scheduler. Tasks that can not be locally scheduled at the cluster level are either migrated to
neighbouring clusters or delegated to a grid scheduler where an appropriate cluster with the required
resources is sought for the execution of the tasks. The inter-cluster interaction underlying the
migration function is performed without the involvement of the grid scheduler and as result may lead
to improved scalability compared to [38]. However, the need for a central grid scheduler is detrimental
to the overall scalability of the scheduling approach. In [38], execution time predictions are used in the
selection of a target execution cluster for parallel jobs. At the cluster level, a genetic algorithm is
utilized to carry out resource allocation and job assignment so as to minimize a comprehensive
performance metric that involves makespan, over-deadline and resource idle-time. In addition, a
cluster load metric is used by the scheduler at the grid layer to balance the load among the various
clusters. This metric is based on job centric parameters such as the number of running jobs, the sum of
their execution time, and the total job size. Other scheduling strategies that attempt to deal with the
dynamic grid environment include those that are economy-centric. These are not the focus of this
paper, however, for completeness it may be of value to mention that they are built around economic
considerations such as resource price, utilization budget, and the overall economic utility of resources
to the consumer [40-43].

Many of the surveyed strategies use performance prediction models to account for the dynamic
grid environmental factors such as the varying resource performance, and the dynamic load conditions.
However, they do not include an explicit quantification of the uncertainty on the resource availability
and load information used by the prediction models and the scheduling decision mechanism.
Furthermore, most of the surveyed works use a grid scheduling layer to coordinate the scheduling
operation across management domains. This may be detrimental to the scalability of the associated
scheduling strategies. In this paper we explore a grid scheduling approach that accounts for the
dynamical nature of the resource behavior and the effect of the uncertainty associated with the state of
the grid service capacity information. Motivated by the distributed topology of CGs, we view the grid
scheduling problem as a set of two sub-problems; namely: (1) a local scheduling sub-problem; and (2)
a delegation sub-problem. For the local scheduling sub-problem, the cluster that receives the service
request performs a comparative assessment of local handling versus delegation to a remote cluster.
The scheduling decision is then synthesized through the determination of the option that would lead to
a higher likelihood of success in the presence of a quantified uncertainty on the estimated state of the
grid service capacity. The state estimation and prediction is provided by a Markov chain model, while
the state uncertainty is quantified using an entropy function. In the above formulation it is assumed
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that the tasks associated with any service request can be executed on any cluster, provided that the
required resources are available. The grid architecture adopted in this work is coherent with the
desirable organization of the grid as a decentralized system of independent providers with distinct
management domains and usage policies [44]. The resulting scheduling strategy is fully decentralized
and posses an inherent scalability advantage over many of the surveyed strategies since no scheduler is
required outside the confine of the independent management domain of a cluster. In addition, the
proposed approach includes a direct account of the uncertainty on the dynamic state of the grid service
capacity. To the best of our knowledge we are not aware of any similar treatment of the subject of
resource state uncertainty in grid scheduling. However, in addition to the cited adaptive strategies
proposed to deal with the grid environmental factor causing this uncertainty, there are some attempts
to account for such uncertainty through advanced reservation schemes [45, 46]. These schemes often
rely on centralized repositories of resource descriptions and state such as Globus MDS [47]. The
scalability problem associated with a centralized directory and the insufficient attention given to the
dynamics of the resource state render these deterministic reservation schemes ineffective for the open
and dynamic grid environment.

The paper is organized as follows: Section 2 describes the grid architectural framework. The
details of the proposed grid scheduling strategy are given in section 3. Section 4 presents the
simulation results, while section 5 includes a short discussion on open issues and future works. The
paper is concluded in section 6.

2 Grid Architectural Framework

The framework under consideration views the grid as a dynamic federation of resource clusters
contributed by various organizations. Each cluster constitutes a private management domain. It
provides a set of grid services assumed to be exposed in a fashion that reflects the basic outlines of the
OGSI recommendations [48]. Clusters may join or leave the grid at any time without any disruption to
the grid operation. The effect of this dynamic membership is limited to the configuration of
neighboring clusters. Each cluster includes a set of agents that host the offered services (see figure 1).
One agent, labeled as the Principal, is designated to coordinate inter-cluster operations such as
dissemination of the availability state of service capacity and the dispatching of delegated service
requests. The lines linking the Principals define the topology of the grid, i.e. the pathways for the
information exchange about the capacity of hosted services. This in turn defines the notion of a
neighbor. Hence, two clusters are considered to be neighbors if and only if there is an information
pathway linking them as defined above. The resulting topology, has the robustness properties of a
Power Law network where most nodes have few links and few nodes have numerous links [49, 50]. In
this topology, that we call Grid Neighborhood (GN) topology, there are no restrictions on the IP
connectivity between any pair of grid clusters. In fact, it is essential that such connectivity be available
for the implementation of grid-wide scheduling strategies and service request delegations among peer
clusters. Furthermore, we will assume that each resource cluster has the capability to handle service
requests for which it has the required resources. Clusters are also assumed to have the capability to
delegate the handling of service requests to other clusters in function of some inter-cluster Service
Level Agreements (SLAs) [51]. While SLA negotiations and enforcements are not addressed in this
paper, we will assume the existence of some agreements that govern inter-cluster interactions such as
the regular exchange of resource state information. Future works may be focused on the integration of
SLA negotiation as part of the delegation step of the proposed strategy especially as such integration is
expected to be further facilitated with the upcoming GGF WS-Agreements standard.
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The proposed scheduling approach does not make any assumptions on the internal architecture of
a cluster. However, in order to provide a context for the arguments that follow we will assume that at
any given time there is one agent configured as the Principal of the cluster (see figure 2). This
configuration may vary dynamically to provide a higher degree of cluster reliability. The Principal is
associated, at a minimum, with a scheduler, a user request manager and a service manager. The
responsibilities of the Principal include the management and allocation of resources within the cluster
and the discovery of grid services hosted by peer clusters. The Principal is also responsible for the
dispatching of delegated user service requests to peer clusters. Each agent is equipped with a local
resource manager and a task execution manager. The resource manager keeps a current account of
resource load and availability, while the execution manager is responsible for the execution of the
tasks assigned to the agent.

3 Entropic Grid Scheduling

In light of the emerging Service Oriented Computing (SOC) paradigm [52] and the increasing
acceptance of the Service Oriented Architecture (SOA) approach to the organization of CGs, a grid
may be viewed as a large scale service provisioning environment. The provided grid services may
include compute cycle services, data mining services, data storage services, network bandwidth
provision, and specialized application services. For the exploitation of grid resources, users submit
service requests that may require one or more grid services to be available with a sufficient capacity.

Hence we define a User Service Request (USR) as follows:

usr =(Q,R,,Q)

Q={501511---lsm—1} (1)
R = {Coycla--'vcm—l}

s,,1=0,...,m-1 is a required grid service and c,,i=0,..,m-1is the service capacity required for
services; . The service capacity is expressed as the number of servslots, where a servslot is defined as

the unit capacity of the hosting environment to run a single instance of the service in question [53]. It
represents the aggregated capacity of the collection of software and hardware resources required for
the successful operation of a single service instance. The resources in question may include CPU slots,
RAM, special hardware devices, disk space, cache size as well as any required licenses of utility
software that the service instance may need for its successful operation. If the service requires for its
execution a specific Operating System, some processor architecture, or the presence of a Java Virtual
Machine and possibly a required heap size, then these would be part of the resources attached to a
servslot. The service handling flowd, which may be specified using a state machine, defines the
execution sequence of the various tasks associated with the handling of the USR. Q is a set of user

defined performance metrics which make up the user desired QoS. These metrics may include, for
example, the maximum wait time before scheduling, and the number of required restart of failed tasks.
In this paper, the Time-To-Schedule (TTS) is the only considered QoS parameter. It is defined as the
maximum allowed discrete time interval separating the events of USR submission and the scheduling
of the last task of the USR respectively.

The grid scheduling problem can be formulated along the following scenario. A USR is submitted
to a given cluster (submission cluster), the question then is: what is the collection of clusters that have
the required service capacity to execute the tasks associated with the USR in compliance with some
user specified QoS? Our proposed solution is a multi-step scheduling approach applied independently
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to each grid service required by the USR. Let the sequence of scheduling decisions needed to find a
cluster that hosts the required grid services; with a sufficient available capacity be defined as follows:

D, ={d;} ", j=0,...m-1 2)

n, is a non-negative integer. Each decision d; is bound to the target cluster x where it is performed.
The scheduling decisiond; has one of the following outcomes: (O1) the TTS is exceeded; (O2) cluster
X is deemed to be the best cluster that can provide the required services, ; (O3) the scheduling task is
delegated to the best neighboring cluster that can provide the required service s;. The “best” qualifier

is assumed in a sense to be defined later in the section. The scheduling process is terminated when
either (O1) or (0O2) is reached. The TTS could be set by the user as part of the USR QoS specification.
The first outcome implies that the USR can not be scheduled in compliance with the required QoS and
the entire scheduling operation is aborted. The second outcome implies that the component of the USR
is deemed to be scheduled and the corresponding cluster is added to the solution set. For the third
outcome, the scheduling step results in the delegation of the task handling to a peer cluster.

In this paper, we assume that the required services of the USR can be independently scheduled. In
other words the selections of the potential providers for the required services of the USR are assumed
to be performed separately. Furthermore, we assume that all service requests arriving at any cluster
comply with the authentication and authorization requirements that might be associated with the
required services in question. In the absence of such assumption, the proposed model may be
expanded to account for the security concerns. However, such expansion would need to address the
issue of service denial. This may be accomplished through a service discovery phase that precedes the
scheduling operation. The discovery process would compile a list of providers for which the given
service request is authorized to be handled. This information may then be used to inform the
scheduling process so as to avoid delegations that otherwise would result in a denial of service.

3.1 Grid Service Capacity Model

The interplay of intermittent resource participation, resource load dynamics, network latency and
processing delay and random subsystems’ failures create a ubiquitous uncertainty on the state of the
grid capacity to handle user requests. In order to account for its dynamics as well as its state

uncertainty, the capacity of a given service is modeled as a stochastic process{Xn, n=0,1, 2} that

takes on a finite or countable number of possible values of servslots. The set of possible values of the
process is the set of non-negative integers{O,l, 2} The index nrepresents discrete time. The

process is said to be in statei at timen if X, =i. Let us assume that whenever the process is in statei,
there exists a constant probability P; that the process will next be in state j such that:

=P X=X, =K X @

Assuming that this is true for alln>0and all states i,,i,...,1,,,1, j, the process under consideration is

known as a Markov chain [54]. The probabilities P, are also called the one-step transition
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probabilities since they are associated with a single increment of the time index variable. Then we can
define the matrix of one-step transition probabilities P; as follows:

I:)00 P01
P= PlO Pll (4)

Similarly, we can define the matrix of the n-step transition probabilities as follows:

I:>0(On) I:)O(In)
PO RY RO . ©)

The element Pij‘”) = P{Xmm = j|Xm = i} represents the probability that the service capacity takes a
value equal to jat time n+m knowing that it took a value of iat timem. Each cluster maintains a
registry of its hosted services. Let sbe one such service, and Ietliﬁ"’ be the total number of events,
recorded in the time Window(O n], where the capacity of shas changed from a valueito a value |
according to the cluster’s resource accounting and management process. Then we can estimate the
one-step transition probabilities at time n as follows:

- |
By(n) = ©)
n

These transition probabilities are maintained in the service registry and updated at every discrete
moment of time. The above equation can be rewritten in the following recursive form:

P =(1-2)R(n-D+an,  (7)

A=1/n, n,=1 if a transitioni — joccurs at timen, otherwisen, =0. For the implementation of the

above relation we start with I3ij (0) =0for all the element of the transition matrix except for ISWW(O) :

which is set to 1, where wis the state of high service capacity. Given the estimates of one-step
transition probabilities, the model can provide an n-step-ahead prediction of a specific service capacity
state such that:

p™M =p" (8)

The above relation is a direct result of the Chapman-Kolmogorov equations [54]. Using (5), (6), (7),
and (8) it is now possible to predict the service capacity state for any arbitrary future time-step. This
capability will be used in the next subsection to complete the formulation of the proposed scheduling
strategy.

The cluster bound service registry holds the service capacity information (service capacity state
and one-step transition probabilities) for the services hosted by the cluster in question and its
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neighbors respectively. In the case of services hosted by neighboring clusters, the value ofn, is

computed based on the information assumed to be regularly disseminated by theses neighbors about
the current state of their service capacity. Since neighbors disseminate the capacity information only
about their hosted services, the registry size for the i —th cluster is equal to:

RSZi:(Ni+§:NjJu (9)

Where uis the required storage space associated with a single service entry which includes the current
service capacity level and state, the one-step-ahead transition probability matrix, and other identifying
fields such as the service name, the cluster 1D, and the IP address of the cluster’s principal. N;is the

number of services hosted by the i—th cluster, and M, is the number of its peer neighbors. Given the
above described fields of a service entry, uis estimated to be equal to (64 + n?) Bytes, where n_ is the

number of states of the Markov chain model. Figure 3 illustrates the required storage size of the
registry as a function of the number of states n, for a cluster with seven neighbors. In practical terms,

the registry would be implemented using a relational database or an LDAP directory bound to the
home cluster. Judicious caching of the registry in the Principal’s run-time memory would ensure a
faster information retrieval. However, since the registry is local to the cluster and exclusively
accessible to its management mechanisms, even in the absence of caching the queering performance
would not degrade with the increase of users or gird size as is the case for Globus MDS2 GRIS and
GIIS [55].

3.2 Entropic Scheduling Strategy

Let us assume that at timem a clusterh hosting the service shas a number of queued requests for
this service with a required cumulative capacity of ¢, >0. In addition to the already queued

queue

requests, an additional request is received for the service s with a required capacity c_, >0. In order

new

to assess the ability of the cluster to handle the service request before the TTS expiry, we have to
estimate the probability that the service capacity enters the state j (corresponding to the ¢, + Cyay

queue

value) at some timen e [m m +T]starting from the current state i,at timem, where i, = j.T is a non-

negative integer which denotes the actual value of the TTS discrete time interval. This probability is
denoted as follows:

P{O{Xmm:j} |Xm:i0}éP£—T>j (10)

lo

Piéj being the probability that the capacity enters the state jin T or less steps is not equal to

M whi i i P -
R ;" which represents the probability that the capacity enters the state jin exactly T steps. This last

may be denoted as P ,as follows:

T <t
— —

I Using this observation, we can compute P
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P =P +

. <T . R [
lo—1 lhb—>)

P . _.(1—P_ 0 )
lh—>] lp—>]

.
AR LA (L E

T-1

P . (1—P. : )
lh—1] lg——>]
&=0

Every term of the above relation represents the probability that the capacity enters the state jin the

corresponding step on condition that it has not entered such state in all the previous steps. Relation
(11) can be written in the following compact form:

(12)

The term Pio(}” is omitted since it is equal to zero for i, # j . Note that a level of service capacity greater
than ¢, +C..,, hosted by a cluster h, would also satisfy the requirement of the service request.

Therefore, the likelihood that there will be a sufficient capacity to handle the request should hence be
given by the probabilityP ., that the capacity enters any state Z(jh) c X within T steps starting

in iO.Z(J.“’ is the set of states associated with a capacity greater than or equal to that associated with

state j. > is the set of possible states of the service capacity. For an observer clusterh, we
defineP . . as the probability that the capacity of service s(that it hosts) enters any state
Milg——> 2]

k e 2" on condition that it has not entered any of the other states of the set={" in the previous steps. It
follows that:

hohip—Ts(M

>R IT (1P o) (13

keZ(jh) Q’E(Z(jh)—{k})

The first index h refers to the observer cluster where the computation is made, while the second index
h refers to the service home cluster. With the assumption made earlier that neighboring clusters
disseminate the capacities of their hosted services, cluster h can estimate, as an observer, the
likelihood that a neighboring cluster xwould have a sufficient capacity to handle a delegated request.
Hence we can generalize relation (13) to quantify the estimated probability by an observer cluster h,

that a peer cluster xeX, (neighbor or itself) has a sufficient capacity to handle a service request as
follows:
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hoxlp—T—x()

Pioﬁ—Tn" H (1_ Pioiﬁ) a4

kexz{ ce(=0-{K})

X, is the set of clusters neighboring h in the sense defined in section 2, and & =, ufh}. ={”is the set

of states associated with a capacity equal or greater than that of state j for the x- hosted service. Note

that when estimating the neighbors’ capabilities, the observer cluster, i.e. h in this case, is only aware
of the capacity information disseminated by its neighbors. As a result the state jcorresponds to a

capacityc, +c,,,, , Where c,is the service capacity of the neighbor at the time of the estimation. The
explicit mention of the service s under consideration is omitted in (11)-(14) to reduce cluttering.
Furthermore, note that the basic transition probabilities Pij(”) used to evaluate (11)-(14) are always

computed from the perspective of the observer cluster. Given the above discussion, the question then
is: (Q1) given a service request submitted to a clusterh, should such request be queued for handling
in the receiving cluster h or should it be delegated to a neighboring cluster? It is important to
remember that such choice is to be performed in the context of a geographically distributed system
that spans multiple administrative domains. Hence, it should in principal take in consideration the cost
of network bandwidth and congestion in addition to the lower assurance of QoS that may be expected
from a remote cluster. These are important issues; however, our primary focus is the effect of the
service capacity state uncertainty on the grid scheduling process. An expanded elaboration that
includes the above mentioned issues of network bandwidth and QoS is deferred to another venue.

Part of our approach to question Q1 is the use of entropy [56] as a performance measure that
reflect the quality of a scheduling decision that is based on uncertain information about the state of
service capacity. There is ample evidence in control theory as well as information theory about the
general applicability of entropy to dynamical systems [57, 58]. In control theory, equivalence was
shown between a generalized energy function as a measure of performance of dynamical systems and
entropy as defined by the second law of thermodynamics [59]. For instance, it was noted that since
decision making is related to information processing one can make the assumption that it contribute to
the generation of entropy in the information theoretic sense [57, 60]. Entropy as a performance
measure was also shown to be applicable and common to both information and feedback control
theories [57]. In this respect, let E ,n=12,.,n be the set of events associated with the

transitions i, >k € Z(jx) , Where x e ¥, , andn, is the cardinality of, . Assuming that these events are
mutually exclusive, we can define an entropy function as a measure of uncertainty on the collection

Q=(J{E,} of these events as follows:
=1
Hé‘:) - z Ph,x,i0i>2<*> log ( Ph X,ig —T—>z ) ) (15)
XeN, ! e !

The superscript in HS;) indicates that the uncertainty is estimated from the perspective of clusterh.

The probabilities are computed using the state information supplied by the neighboring clusters about
the capacity associated with the hosted service sin question. Similarly we define a measure of
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uncertainty on the occurrence or nonoccurrence of the transition event i, —>2‘jh) for the cluster has
follows:

Héh) —_p _Iog(Ph’h]iOL)z(jh)) (16)

h.h,ip—T— (M

Now let us consider the subset X, < X, such that for all z e X, we have:

2ig—Tox() rllgi((Ph,x,ioi)ﬂjx)) (17)
Each element z e §; is associated with the maximum probability that the hosted service in question
will have a capacity that enters one of the states of the setZ‘jZ). If we let z° e X} be a randomly chosen

cluster then the proposed delegation heuristic can be described as follows. A delegation to the
neighboring cluster z~ is performed if only if the following relations are satisfied:

<
h.hip—"—=(" < Pa - Ph,z*,ios_ngz*) (18)
HY <H” (19)

In all other cases, the service request is queued locally. Relation (18) ensures that the delegation takes
place only if the transition to the desired set of solution states is most likely to happen compared to a
local queuing of the service request. The second relation ensures that such predictive assessment is not
done in the presence of a higher uncertainty. Indeed, given the shape of the entropy function, relation
(18) would not be sufficient to yield a delegation decision that is necessarily better than local queuing
(see figure 4). For example a probability of 0.5 for delegation is not necessarily better for the
scheduling performance than a probability of 0.25 for local queuing given the higher uncertainty
associated with the 0.5 probability. In order to avoid the region of high uncertainty, we introduced the
threshold P, which should preferably be chosen to be greater than 0.5.

For the considered single service USR, the scheduling sequence given in (2) reduces to D ={di}::°o.
Given the above delegation strategy, the decisions d. are synthesized using the proposed entropic grid

scheduling heuristic illustrated using the UML activity diagram of figure 5. Because a delegation is
more costly (network bandwidth, congestion etc...), it is allowed only if: (1) it is estimated that the
target neighboring cluster is more likely to have a sufficient service capacity compared to the
receiving cluster where the scheduling decision is being made; (2) the uncertainty associated with the
information used to make the determination in (1) is lower than that associated with the prediction
information about the future state of the locally hosted instances of the service. Note that due to the
use of the TTS limit to terminate the scheduling process, the sequence D is always finite. If the TTS
limit is not exceeded, the scheduling sequence would consist of n, delegations and a single final

decision to locally schedule the service request.
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4  Simulation Results

The Midland Grid Emulator developed by the author was used for the simulation of the proposed
scheduling approach (see figure 6). The emulated grid may be configured for an arbitrary number of
clusters. The inter-arrival time of USRs at the various clusters is simulated using a Poisson process for
the first set of simulations while a Pareto distribution is used to simulate a bursty USR load for the
second set of simulations. For the reported simulation results, the USRs consist of a single required
grid service with a randomly generated required capacity. The duration of the execution time
necessary for the handling of a USR is also simulated using a Poisson process.

One of the potential commercial advantages of a grid is the ability to construct an open computing
system where new resources can be added as needed in order to handle increased user load or more
computationally demanding applications. The realization of this advantage relies critically on the
scalability of the decision-making mechanisms such as service discovery, scheduling and load
balancing. In concrete terms, the scheduling strategy is said to be scalable if an increase in the grid
size does not result in a drastic degradation of the grid performance as embodied by the most pivotal
performance indicators such as response time, throughput, and resource exploitation. In order to
quantify these indicators we define three corresponding performance metrics; namely:

V= S ZR nhops, (20)
R i=1l
n
p==" (21)
nR
0= (22)
nDS

vis the grid-wide average number of hops per successful scheduling decision. x is the scheduling
throughput rate, and ¢ is the resource exploitation rate. n is the total grid-wide number of service
requests, and n,, is the number of handled service requests. nhops, is the number of hops before the
i—th service request was successfully scheduled. n is the grid-wide total number of deployed
instances for a given service, and n, is the grid-wide total number of used instances of the same

service. The exploitation ratio is normalized using the throughput in order to reflect the reality that for
the same simulation time there are more service requests generated in the case of random delegation
because of the smaller processing overhead of the Midland Grid Emulator. Using these defined
performance metrics, the performance of the proposed scheduling strategy is illustrated through a
comparison against two different scheduling strategy; namely: (1) a scheduling scheme based on
random delegation (see figure 7-9); and an adaptive scheme based on dynamic load balancing (see
figure 10-15).

In the first set of simulations, the delegation for the random scheduling scheme is made to a randomly
selected cluster that is believed to have the required service capacity at the time of the delegation
decision according to the capacity information disseminated among neighbors. The simulation results
clearly illustrate that the proposed entropy-based scheduling outperforms the random-based
delegation. The simulated grid environment had the exact same configuration for both scheduling
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strategies. This includes the service request distributions as well as the hosted resource distributions.
Both strategies are multi-tier scheduling approaches where the service request is either handled at the
submission cluster or delegated to a peer cluster if the service capacity of the submission cluster is
inadequate. The delegation process is recursively applied until a cluster with the sufficient service
capacity is found or the TTS timeout is reached. The main distinction between the proposed entropy-
based scheduling algorithm and the random delegation is in the choice of the next peer cluster
designated to handle the service request. In this respect we attribute the relative superior performance
of the proposed entropic scheduling approach to the quantification of the uncertainty on the
information about the state of service capacity. With the use of the quantified uncertainty, the rate of
rejection of delegated service requests due to exceeded TTS limit is reduced. Hence the throughput for
the entropic scheduling is found to be about 100% higher than that for random delegation (see figure
7). For the same service request distributions, and grid resource distributions, the resource exploitation
of the proposed algorithm not only outperforms the random delegation, but was also maintained
around the 80% level as the grid size is increased to 1000 clusters (see figure 9). Under the same grid
environmental conditions, the random delegation resulted in a dramatic decrease of the resource
exploitation (see figure 9). The convergence speed was also far better for the proposed algorithm
compared to the random delegation (see figure 8). In fact, the simulation results of figure 8 do not
express the full story because the number of hops is computed only for the delegations that resulted in
a service request handling within the TTS time limit. Indeed, given the high rejection rate (low
throughput) for the random delegation, the performance differential between the entropic scheduling
and random delegation would in reality be more significant if we included the delegations that never
converged within the TTS limit. The other clear advantage of the proposed entropic scheduling
algorithm is its scalability. All three defined performance metrics show a relatively stable level as the
grid size is increased from 25 to 1000 clusters (figures 7-9).

It is important to note that what we have labeled as a random delegation is in fact a scheduling strategy
that relies on the choice of a target cluster from a legitimate set of clusters that are all deemed
adequate for the handling of the service request as far as it can be determined from the propagated
resource state information at the time of the delegation decision. In fact this is one of the most widely
used scheduling approaches in commercial schedulers such as LSF [61]. Hence, we consider such
strategy as a legitimate representative of any scheduling scheme that utilizes the currently observed
grid resource state information without any consideration for the associated uncertainty. However, in
order to further illustrate the performance of the proposed strategy, we run a second set of simulations
driven by a bursty request submission process, where the request inter-arrival time follows a Poisson
process while the number of simultaneously arriving service requests is governed by a Pareto process.
The arrival Poisson rate is different for each cluster and is randomly chosen. The range and shape of
the Pareto process are set to 10 and 2 respectively for all clusters so as to provide an equalized input
load from all submission points of the grid. For this simulation, the proposed strategy is compared to
an adaptive scheduling scheme that we call Adaptive Load Scheduling (ALS). Similarly to the
proposed strategy, ALS uses a multi-step scheduling framework where a service request is scheduled
locally if a sufficient service capacity is available otherwise it is delegated to the neighboring peer
cluster with the lowest load among all neighbors of the cluster currently processing the service
request. The load is defined here as the ratio between the used and the total capacity for the hosted
service in question. The ALS strategy has much in common with the load balancing approach used in
the adaptive scheduling scheme proposed in [38]. However, instead of making use of a grid scheduler
to perform the load balancing, ALS utilizes a delegation strategy based on disseminated load
information among neighbors. The common use of the peer-to-peer delegation framework allows a
more appropriate comparison between the Entropic and the ALS strategies. The simulations are
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conduct for balanced and unbalanced grid resource distributions. For an unbalanced distribution, the
grid clusters are configured to host randomly chosen set of services with randomly generated values of
respective service capacities. For a balanced distribution all grid clusters are configured to have the
same services with the same service capacity levels. The results of the simulations show that all three
metrics maintain a relatively stable level as the grid size increases for both compared strategies (see
figures 10-15). This illustrates the expected good scalability of both methods since they share the same
decentralized and neighborhood-based delegation mechanism. Both strategies yield a comparable
good performance with respect to throughput and exploitation levels for both balanced and unbalanced
grid resource distributions. This similar performance may be explained by the fact that the compared
strategies utilize, within the same neighborhood delegation framework, two “conjugate” exploitation
state indicators; namely: available service capacity (supply) and service load (demand). The implied
equivalence between these two exploitation variables is meant only in the sense that both load and
capacity availability may be used to build an effective resource management mechanism that
maximizes exploitation and throughput. The two strategies diverge in their performance vis-a-vis the
average number of hops, where the entropic scheduling approach outperforms ALS (see figures 10 and
13).  While both strategies yield a satisfactory resource exploitation, the entropic approach achieves
this goal at a lower cost (number of hops) than ALS. This may be explained by the fact that the
prediction of future service capacity and the quantified uncertainty are used in the proposed approach
with a bias favoring local queuing so as to encourage the consumption of resources that are closer to
the submission cluster. As result, the cumulative effect of this bias throughout the delegation chain
leads to a provider cluster that is closer to the submission cluster than would otherwise be possible. On
the other hand, the delegation in ALS relies on a one step-ahead prediction of the loads associated with
the cluster where the scheduling step is being taken and its neighbors respectively. The request is
delegated to a peer whenever the current scheduling cluster is estimated to have a higher load than its
neighbors, resulting hence in a higher number of average hops. Equipping ALS with a different load
prediction may reduce the average number of hops. However, the entropic approach would still have
an advantage, at least conceptually, with respect to the fact that a many-step-ahead prediction of
service capacity is provided along with a quantification of the uncertainty associated with the very
information being utilized to make the prediction. The lower average number of hops for the balanced
resource configuration compared to the unbalanced configuration is expected (figures 10 and 13). This
is because the uniformly available service capacity throughout the grid translates into a diminished
incentive for request delegations since the local and remote exploitation patterns are likely to converge
to similar equilibrium points given the similar USR load distribution used for all clusters. It should be
mentioned that a lower average number of hops may not necessarily translate in a higher throughput.
Indeed, a service request may be handled after few hops but separated by longer pending periods of
time between delegations, while another service request may be handled after many hops with smaller
pending periods of time. This may be the reason behind the difference in the average number of hops
of the entropic and the ALS strategies while yielding similar resource exploitation results.

The use of a bursty USR load distribution resulted in an increase of the average number of hops for the
proposed scheduling strategy (figures 8, 10, and 13). This is expected given the highly dynamic nature
of service capacity induced by the combination of a Poisson distribution for the request inter-arrival
time and the Pareto distribution for the simultaneously arriving number of service requests.
Nevertheless, the scalability advantage illustrated for the Poisson USR load still holds for the Pareto
USR load. Furthermore, the overall performance of the entropic scheduling approach is illustrated to
perform equally well or better compared to the load balancing ALS approach. This is facilitated
through an experimental widening of the capacity intervals associated with the states of the Markov
chain so as to filter the high frequency changes of the service capacity levels while maintaining an
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acceptable prediction. While we have illustrated the encouraging performance under a bursty user
load, other related issues may be considered in future works; including the finite size of the
submission queues and the associated issue of service request loss that may result from bursty USR
load distributions.

5 Discussion and Future Works

The scientific and commercial viability of the grid computing paradigm requires a comprehensive
approach to a number of critical issues, in particular: the ubiquitous uncertainty, the distribution of the
grid management framework, and the scalability of the exploitation and control mechanisms. In this
respect, the synthesis of the proposed scheduling approach is systematically developed to take into
account these critical issues. Starting from the necessity for a distributed management and control
framework, the proposed scheduling approach is designed to be fully decentralized. The delegation to
neighboring clusters encourages the use of the grid resources that are closer to the submission point.
This has been suggested to result in a more efficient and cost effective use of the underlying network
infrastructure [61]. With the assumed topology of the grid, the exchange of service capacity
information is limited to inter-neighbor pathways. This, we suggest, induces an improved scalability of
the scheduling approach since immediate neighbors are privileged with the knowledge of the service
capacity state information to the exclusion of other peers. Such advantage is highly desirable since
scalability is a critical performance indicator that ranks high in importance for the practical feasibility
of grid decision making strategies; including scheduling. The network of distributed service registries
needed to support the proposed scheduling approach is more scalable compared to Globus-MDS2. In
fact, it was shown that both MDS2 GRIS and GIIS of the Globus Toolkit may maintain a good
scalability only if data caching is used, otherwise the performance degrades dramatically with the
increase in the number of users [55]. Such caching share significant similarities with the distributed
cluster bound service registries considered in this paper. The second contribution of this work is the
proposed theoretical formulation of an uncertainty model of the service capacity state. This uncertainty
model was illustrated to yield a very encouraging performance with respect to throughput, exploitation
and convergence speed when compared to random delegation and adaptive load balancing approaches.
We believe that the development of this uncertainty model on the service capacity and its integration
in the scheduling strategy is not only novel but is also of critical importance to the grid computing
paradigm. This is because addressing the fundamental issue of uncertainty is by far one of the most
decisive challenges to the success of any management or control framework applied to large scale
dynamical systems such as computational grids.

The extra storage overhead necessary for the maintenance of the transition probabilities associated
with the Markov chain model may require future attention. As shown in section 3.1, the size of the
matrices of the one-step transition probabilities is dependent on the number of states associated with
the service capacity. One possible approach to limit the size of these matrices is to associate the states
with disjoint intervals of capacity values. The width of these intervals may be appropriately chosen to
minimize the registry storage size and achieve an appropriate filtering of the fast changes that may be
caused by bursty request arrivals. However, such reduction in resolution of the model would have to
be evaluated in the context of a tradeoff between the storage size of the service registry, the sensitivity
to the capacity changes and the performance of the scheduling process. Another issue that may be
considered in future works is the assurance of request handling within the specified TTS. The
proposed strategy has a built in process of compliance with the TTS requirement through the selection
of a cluster that is predicted to have a sufficient capacity within the specified TTS. However, a more
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dynamic assurance may be considered in future works whereby requests that are estimated at risk of
violating the TTS requirement are given a higher priority of handling. Such assurance would have to
consider the tradeoff between network congestion and request blocking since a long TTS may lead to
less blocking of service requests but more network traffic while a low TTS may lead to more blocking
but less congestion.

6 Conclusions

The paper presents a decentralized grid scheduling approach that relies on a Markov chain based
estimation model of the service state capacity and a novel entropy-based quantification model of the
related uncertainty. The proposed approach is illustrated to have a scalability advantage in the sense
that an increase in the size of the grid does not negatively impact the scheduling performance in any
significant fashion. Furthermore, the performance of the entropy-based scheduling approach is shown
to perform well compared to two different scheduling strategies with respect to throughput,
exploitation and convergence speed. The proposed approach does however require an extra storage
capacity at the cluster level to maintain the dynamical model of service capacity. This, we conjecture,
can in practice be satisfactorily addressed through a discretization of the service capacity range into a
sufficiently small set of states.
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Figure 1: The grid as a federation of resource clusters.
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Figure 2: Cluster Infrastructure.

Page 18 of 33



Journal of Grid Computing, vol. 4, no. 4, 2006, pp. 373-394.
The original publication is available at www.springerlink.com

Number of States

Figure 3: Storage size of the service registry versus the number of capacity states.
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Figure 10: Average number of hops as a function of the grid size for the ALS (*) and entropic scheduling strategies

respectively in the case of unbalanced grid resource distribution.
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Figure 11: Average throughput rate as a function of the grid size for the ALS (*) and entropic scheduling strategies

respectively in the case of unbalanced grid resource distribution.
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Figure 12: Average exploitation as a function of the grid size for the ALS (*) and entropic scheduling strategies

respectively in the case of unbalanced grid resource distribution.

Page 26 of 33



Journal of Grid Computing, vol. 4, no. 4, 2006, pp. 373-394.

The original publication is available at www.springerlink.com

sdoH Jo JaquinN abelany

1000

900

CG Size

Figure 13: Average number of hops as a function of the grid size for the ALS (*) and entropic scheduling strategies

respectively in the case of balanced grid resource distribution.
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Figure 14: Average throughput rate as a function of the grid size for the ALS(*) and entropic scheduling strategies

respectively in the case of balanced grid resource distribution.
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Figure 15: Average exploitation as a function of the grid size for the ALS (*) and entropic scheduling strategies

respectively in the case of balanced grid resource distribution.
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