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Can artificial intelligence improve
cancer treatments?
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Abstract
Artificial intelligence (AI) powered by the accumulating clinical and molecular data about cancer has
fueled the expectation that a transformation in cancer treatments towards significant improvement
of patient outcomes is at hand. However, such transformation has been so far elusive. The opacity of
AI algorithms and the lack of quality annotated data being available at population scale are among the
challenges to the application of AI in oncology. Fundamentally however, the heterogeneity of cancer
and its evolutionary dynamics make every tumor response to therapy sufficiently different from the
population, machine-learned statistical models, challenging hence the capacity of these models to
yield reliable inferences about treatment recommendations that can improve patient outcomes.
This article reviews the nominal elements of clinical decision-making for precision oncology and
frames the utility of AI to cancer treatment improvements in light of cancer unique challenges.

Keywords
artificial intelligence, cancer treatment, clinical decision-making, machine learning, reinforcement
learning

Social media content

1. Adaptive decision support systems that continuously learn from patient data will enable the
development of more effective cancer treatment strategies.
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2. The consideration of patient health state, patient stratification, outcome and toxicity pre-
dictions and AI treatment recommendations is essential to effective cancer treatment decision
making.

3. Data representation and nomenclature standards will enable the creation of federated da-
tabases of clinical data to power AI-enabled decision support systems for oncology.

4. Models of data governance addressing privacy and consent challenges will unlock the value
of collected patient data towards the realization of personalized, precision cancer care.

Introduction

The increasing burden of cancer on the capacity of healthcare systems and the need to reduce the
negative impact of the disease and its treatment on the quality of life of cancer patients will require
the development of cancer care strategies that are driven by predictive, personalized, preventive and
participatory (P4) system approaches.1 Therein lies the catalysts towards achieving the necessary
effectiveness and efficiency of cancer care delivery. Currently, the most widely used treatment
strategies are informed by guidelines for clinical practice developed by expert panels. For example,
through its Quality Oncology Practice Initiative, the American Society of Clinical Oncology
(ASCO) provides guidelines to oncology sites which in return report their practices. ASCO report
back with an evaluation of the clinical site based on quality measures that focus on the process of
care and patient-oriented measures such as pain management.2,3 However, with the increasing
availability of big clinical and molecular data about cancer, artificial intelligence (AI) and machine
learning (ML) are increasingly explored towards assisting in the multidimensional cancer treatment
decision-making process.4,5 The potential utility of AI to oncology includes diagnostics, prog-
nostications, treatment outcome predictions and treatment prescriptions. For instance, deep neural
networks (DNNs) and convolutional neural networks have been used to classify skin cancer lesions6

and histologic patterns for lung cancer,7,8 predict HLA-peptide binding affinity for immunother-
apy,9 and delineate target volume for radiotherapy.10 Other examples of ML applications in on-
cology include the assessment of short-term mortality risk of patients starting chemotherapy,11

breast cancer treatment recommendations to prevent metastasis,12 predictions of patients that can
benefit from adjuvant therapy,13 and the use of Bayesian networks to assist in treatment decision-
making.14,15 Predictions of cancer recurrence have also been made using Bayesian networks and
logistic regression.16 Beyond these examples of AI application in oncology, AI may be indis-
pensable to the future of precision oncology where the increasing number of biomarkers and
treatment options being available need to be considered in light of the continuously generated
streams of clinical and molecular data to identify optimal treatments that would improve patient
outcomes in the face of dynamic disease-treatment interactions. Furthermore, the effective reali-
zation of adaptive therapeutic modalities to counter cancer evolutionary dynamics and therapeutic
resistance17 would benefit from AI-assisted therapy design approaches that mine big clinical and
molecular data for actionable knowledge to assist in the synthesis of personalized, optimal cancer
treatment regimes.

The path to the realization of the AI potential in oncology is aligned with the drive for greater
standardization, efficiency and consistency of cancer care across the various domains of the on-
cology workflow.18,19 This drive is best illustrated by the ongoing efforts invested towards the
adoption of digital pathology20–23 and the use of AI in radiation oncology.24,25 However, there are
significant challenges to the adoption of AI in the oncology clinic.26–29 These challenges range from
the lack of data standardization and the insufficient availability of annotated data to the opacity of AI
algorithms and their eventual performance drift due to the expanding cancer knowledge and data
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universe.18,26 Furthermore, the dearth of clinical validations of AI algorithms and the lack of
adequate frameworks for regulatory and legal governance of patient data and AI algorithms are also
notable barriers to the wide adoption of AI models in clinical decision-making. The development of
standards, guidelines and frameworks for the clinical validation of AI are among the ongoing efforts
to overcome the barriers to the integration of AI in clinical practice.30–32 For oncology, where a
tangible impact of AI use on patient outcomes is proving to be difficult to achieve,33,34 more
research is needed to study the extent to which AI supported treatment decision-making can improve
cancer treatment.

ML algorithms are fundamentally built on data-driven machine learned mappings that represent
correlations or causality between variables of interest. Learned or discovered correlations and
patterns from big data are the basis for inferences, predictions, prescriptions and recommendations
made by AI/ML algorithms. For non-safety critical applications such as image recognition, movie
recommendations, market segmentation or trivia games, the use of AI has been very effective in
mobilizing the statistical power of big data towards solving the problems at hand. On the other hand,
replicating the success of AI to treatment decision-making in oncology has so far been elusive.33–36

Machine learned or discovered statistical correlations between treatments and patient outcomes are
inevitably limited in their predictive power due to the reliance on temporal snapshots of tumor
dynamics associated with treatment response data of the relevant patient population. Indeed, the
heterogeneity and evolutionary dynamics of cancer37–39 can potentially make every newly diag-
nosed cancer sufficiently different from the machine learned statistical patterns for the AI algorithms
to yield reliable inferences about treatment recommendations that can improve patient outcomes. In
particular, the static data context of machine learning imposes an intrinsic limitation on the capacity
of ML models to recapitulate the nonlinear, time-varying dynamics of patient treatment response.
Furthermore, the longitudinal nature of cancer care requires AI algorithms to be adaptive to the
inevitable changes of the tumor pathophysiology which occur during the multiple cycles of
treatments administered in the neoadjuvant, curative, adjuvant, management and relapse settings. In
light of cancer unique challenges that are highlighted above, further research is needed to chart
feasible pathways towards realizing AI potential utility to cancer treatment decision-making.

Foundations of cancer treatment decision-making

The expanding universe of therapeutic options and the availability of growing clinical and mo-
lecular datasets about cancer are prime ingredients for realizing the vision of an AI-supported
personalized, precision oncology. The potential utility of AI may be leveraged towards the de-
velopment of an adaptive cancer treatment framework that addresses cancer evolutionary dynamics,
which underlies therapeutic resistance as the most critical challenge in the fight against cancer. The
conception of such framework is inspired by the vision of rapid learning health care systems,2,40,41

where routinely collected and analyzed patient clinical and omics data can provide a constant source
of updated clinical evidence to support the continuous improvement of treatments and patient health
outcomes. Adaptive cancer treatment approaches require the integration of three canonical
components of effective clinical decision-making:

· Modeling disease state dynamics
· Prediction of treatment outcomes and toxicity
· Adaptive treatment recommendations
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The consideration of the above-mentioned elements addresses key challenges associated with the
complexity of decision-making in oncology.42 The structure of this nominal, clinical decision-
making framework supports the inclusion of decision factors and criteria associated with the
physician, the patient and the context of the oncology practice which are usually considered in
making clinical decisions.42 These decision factors include patient disease features, biomarkers,
treatment toxicity, treatment outcomes, patient quality of life, treatment protocols and guidelines,
and physician experience. The consideration of tumor evolutionary dynamics through the modeling
of disease state stems for the growing understanding of the determinant role that evolution has in the
progression of cancer43,44 and the necessity to operationalize such insight to steer cancer dynamics
away from therapeutic resistance.45 The regular monitoring and prediction of tumor evolutionary
dynamics would enable the synthesis of adaptive treatment recommendations that are personalized
to the specific features of the patient’s disease and its progression dynamics.

Artificial intelligence-enabled adaptive cancer therapy

Cancer clonal evolution fuels tumor evolving genetic heterogeneity underlying therapeutic re-
sistance. Mathematical models estimate the existence of 1–4 dominant clones at frequencies greater
that 10% at the time of tumor detection for colorectal cancer, whereas most subclones are present at
frequencies that are below 10%.46 In order to mitigate the evolution of therapeutic resistance,
treatment decisions would have to be cognizant of the intra-tumor clonal heterogeneity and the
evolution of subclonal populations, including those that are not detectable at the time of diagnosis.
Noting that therapeutic resistance is driven by the proliferation of pre-existent resistant subclones,
evolutionary-based treatment strategies, such as adaptive and extinction therapies, have been
proposed to steer the evolutionary dynamics of resistance towards cancer cure or management.45

Adaptive therapy exploits the competition between treatment-resistant and treatment-sensitive
clones, whereby therapy cycles aim to maintain a proportion of treatment-sensitive cancer cells that
compete against treatment-resistant ones towards perpetuating a manageable disease burden. On the
other hand, extinction therapy exploits the vulnerability of small populations to ecological per-
turbations. In a first stage, cycles of a selected therapy targets treatment-sensitive clones reducing
the disease burden to clinically undetectable small residual populations of resistant clones. A second
therapy is applied as a ‘second strike’, before a clinically detectable rebound of resistant clones, to
perturb their small populations and drive them to extinction. Both adaptive and extinction therapies
are inspired by eco-evolutionary models and have the advantage of relying on actionable yet simple
principles. However, their clinical implementations face multiple challenges. These include
managing treatment toxicity and obtaining sufficiently accurate predictions of disease burden
throughout the duration of patient care, from diagnosis and initial treatment to disease management.
Furthermore, given the increasing numbers of cancer biomarkers and treatment agents being
available, and the complexity of treatment-response dynamics, designing patient-centric, per-
sonalized eco-evolutionary treatments will be challenged by the human cognitive capacity, shown to
handle no more than five variables for decision making.47 Adaptive and extinction therapies can be
framed as a sequential decision problem.48 Both therapies involve successive selections of
treatments to be administered, based on monitored tumor burden, towards achieving a desired
objective, which may be cure or disease management. Reinforcement learning49,50 is a potentially
effective AI approach for the selection and sequencing of therapeutic agents within the context of
adaptive cancer therapy. Given a continuously observed disease state, the goal is to select a sequence
of treatments to drive the cancer to a terminal state, such as remission, while optimizing a reward
function defined based on treatment outcomes and toxicity. In the parlance of reinforcement
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learning, the treatment decision-maker is labelled as the agent acting on the cancer, as the envi-
ronment, through the administration of a sequence of treatments where each treatment is selected
based on the observed state of the cancer while maximizing a cumulative reward function for the
actions of the decision-maker (i.e., the agent). The reward can be defined as a function of data-driven
predictions of treatment toxicity and outcomes so as to guide treatment selection towards the goal of
improving overall survival with minimal treatment toxicity as a clinical end-point.

Disease state modeling

Cancer is a stochastic, nonlinear dynamical system whose treatment requires a regularly updated
observation of disease state as a feedback for therapy adaptation to its complex treatment response.
Reinforcement learning approaches to treatment selection involves a feedback loop that adapts the
therapy based on a reward obtained for selecting a specific treatment when the disease is observed in
a given state. The reward function can be defined to guide treatment selection based on the expected
treatment outcomes and toxicity as the most meaningful clinical end-points.

Although cancer progression dynamics under therapeutic interventions are stochastic, it is
reasonable to categorize them along a finite set of disease states. RECIST (response evaluation
criteria in solid tumors) categorization of tumor burden in response to treatment51 provides a
nominal template for the definition of disease states. However, a fine-grain disease state definition
may be needed to improve the monitoring resolution of tumor dynamics, in particular with respect to
clonal composition of the tumor. Each one of the RECIST categories, i.e., SD (stable disease), PD
(partial response), CR (complete response), and PD (progressive disease), can be expanded into
multiple substates to reflect fine-grain properties relevant to tumor evolutionary dynamics, including
clonal composition. Clinically parameterized mathematical models of tumor evolutionary dynamics
could provide additional guidance on how to define the set of disease states that would be ap-
propriate to represent the key stages of the disease.

The feasibility of adaptive cancer treatment depends on advances in disease monitoring and
assessment approaches of treatment response.52–56 Although RECIST guidelines can serve as a
nominal tool for the evaluation of patient response to treatment, continuous monitoring of the tumor
and its microenvironment is needed to assess the effect of therapy on tumor progression dynamics.
Imaging provides an avenue for the assessment and quantification of physiological and molecular
tumor features. The combined use of MRI (Magnetic Resonance Imaging), PET (Positron Emission
Tomography), and CT (computed tomography) imaging modalities, is enabling the quantification of
tumor heterogeneity and the estimation of its properties, including: diffusion, glucose metabolism,
hypoxia, T cell infiltration, and cellularity.53,54,57,58 Imaging-based parameters quantifying tumor
properties have been shown to have either pre-clinical or clinical prognostic information53,59–62 and
hence may be used to resolve the fine-grain substates within the RECIST categories. In addition to
the imaging-based estimation of tumor burden, advances in liquid biopsy techniques56,63 used to
extract circulating tumor cells (CTC), and circulating tumor DNA (ctDNA) from patient blood are
paving the way for feasible approaches to the estimation of tumor clonal composition.63 In fact, the
longitudinal monitoring and estimation of disease states using liquid biopsy is expected to be a key
enabler of adaptive cancer therapy. Finally, proxy biomarkers such as PSA (prostate specific
antigen) for prostate cancer and lactate dehydrogenase for melanoma, which have been used to
measure tumor volume,17 may also be combined with the above-mentioned estimation approaches
to yield more accurate inferences of observed cancer disease states.
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Big data infrastructure

An AI-enabled framework for adaptive cancer therapy would involve AI models for treatment
recommendations and predictions of treatment response and toxicity. The training of these AI
models is dependent on the availability of quality clinical, molecular and imaging data in sufficient
volume. The training data must exhibit a high signal-to-noise ratio and must be sufficiently accurate
and representative of the diverse patient populations in order for these AI models to achieve their
optimal performance and applicability in the clinic. Data relevant to precision oncology include
multi-omics data (e.g. imaging/radiomic, proteomic, genomic, metabolomic, etc.) in addition to
pathology data, electronic medical records (EMR), as well as epidemiological and clinical trials’
data. Although big genomic, transcriptomic, proteomic and epigenomic datasets spanning multiple
cancer types are publicly available to researchers through the cancer genome atlas (TCGA) pro-
gram,64 most patient data are not accessible outside the institutions where the data are collected. This
applies to clinical data that are being continuously accumulated in EMR systems across hospitals
and clinics around the world. Access to these protected treasure troves of data about cancer is critical
to the development and assessment of AI-enabled applications for cancer treatment decision-
making. One of the primary challenges to patient-level data sharing between institutions is the
compliance with data privacy and protection regulations such as the General Data Protection
Regulation (GDPR).65 Data interoperability, both syntactic and semantic is another challenge to the
development of clinically useable AI-enabled applications to support cancer treatment decision-
making. In this respect, the independent collection of clinical data at points of care would need to
adhere to inter-institutional standards of interoperability to facilitate data exchange, sharing and
harmonization across organizations. The recognition of this need has led to the emergence of a
growing body of standardization initiatives,66,67 including the completed Clinical Data Standards
Initiative.68 These standards are expected to serve as the backbone for the integration of data streams
from external EMR systems and other systems/databases covering distinct aspects of disease
diagnostics, treatments, and patient outcomes. Indeed, the interoperability expected from the
adherence to these data standards is a prerequisite to achieving the much-coveted overall goal of
health data integration.69 The integration of multi-modal cancer data is another challenge to un-
locking the utility and value of clinical, molecular and imaging data in powering AI-enabled
adaptive cancer treatments. Several approaches have been proposed to fuse the disparate types of
cancer data, including the reliance on abstractions that can bridge and harmonize data covering
distinct knowledge spheres such as diagnostics and proteomics.66

The computational burden of training and optimizing DNNs or deep learning (DL) models
increases with the product of the size of the training data and the number of model parameters. This
has raised the concern that computational limits would constrain a variety of DL applications.70 On
the other hand, maximizing the predictive power and clinical relevance of DL models for appli-
cations, such as the prediction of cancer therapy response, will benefit from the availability of large-
scale datasets.71 In light of the concern about the scaling of computational burden as a function of
the number of data points, the exploitation of an expanding patient data space towards highly
performing AI models that are useable in the clinic would have to also consider the ensuing
computational needs.

Overcoming the challenges in the collection and sharing of quality patient data in sufficient
volume would unlock the “ground-truth” knowledge necessary to develop and assess the predictive
power of AI models for precision oncology.72 Ultimately, realizing the AI potential in healthcare,
including oncology, will require building collaborations among the relevant stakeholders to
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establish big data infrastructures to collect, curate and share the quality data needed to develop
clinically pertinent AI applications.67,73

Is there a pathway to artificial intelligence enabled improvement of
cancer treatments?

The application of reinforcement learning to adaptive cancer treatment is congruent with the therapy
objective of achieving an effective control of disease course with the end-goal of cure or chronic
care management. The feasibility of the approach does however hinge on a precise monitoring of the
disease state. Furthermore, although reinforcement learning algorithms need the latitude to explore
and learn from the response to a diverse set of actions, such exploration is not feasible in cancer care.
The set of available treatments and combination thereof that can be utilized as therapeutic actions in
a reinforcement learning algorithm, or any other adaptive treatment approaches, must have prior
clearance for clinical use. On the other hand, the set of clinical trials for combination therapy
however large and growing it may be, it would still be limited in covering the space of possible
treatment combinations that could be explored by reinforcement learning. Therein lies the co-
nundrum. Although AI algorithms such as reinforcement learning have the potential to find the
optimal sequence of cancer treatments for a specific patient, learning is required through explo-
ration, which has to be curtailed to avoid complex toxicity to the patient. However, an adaptive
treatment designed to incorporate a controlled exploration of an approved set of treatment options
may be sufficient for patient-centric personalization of the therapy. Lung cancer may be a good
illustrating example to consider given the many ongoing or completed clinical trials on the
combined use of targeted therapies, chemotherapy, and immunotherapy in the neoadjuvant
(i.e., before surgery) and adjuvant (i.e., after surgery) settings for respectable stages IB to IIIA
NSCLC (Non-small cell lung cancer). Ongoing or completed clinical trials on TKIs (tyrosine kinase
inhibitors) as adjuvant therapy for resected IB to IIIA NSCLC involve the use of different agents
(e.g., Erlotinib, Gefitinib, Vinorelbine and Cisplatin) administered for a mean duration that ranges
from 4.8 months to 23.9 months.74 There are other ongoing or completed clinical trials such as
NAUTIKA1 (NCT04302025) on the use of Alectinib, Entrectinib, Vemurafenib, Cobimetinib as
noeadjuvants before resection, followed by chemotherapy and Pralsetinib as adjuvant therapies for
NSCLC. Other clinical trials are also ongoing or completed on the use of combinations of che-
motherapy and immunotherapy (PD-1/PD-L1 antibody) for NSCLC in the neoadjuvant setting.75

After the approval of Osimertinib76 as an adjuvant therapy for EGFR mutated NSCLC, the Ne-
oADURA (NCT04351555) study was initiated on the use of Osimertinib alone or in combination
with chemotherapy as a neoadjuvant for NSCLC. These studies are expected to generate an ex-
tensive amount of data to guide the choice of combination therapies that can be used preoperatively
and postoperatively for resectable NSCLC. AI-powered analytics would be most appropriate to
mine the increasingly accumulating data from these clinical trials to support oncologists in
streamlining the process of selecting candidate therapies to be used in the neoadjuvant and adjuvant
settings based on biomarkers such as the status of oncogenes (e.g., EGFR, ALK, and RET) for
targeted therapy and the status of PD-1/PD-L1 for immunotherapy. Example AI approaches that can
be used in this case could include probabilistic decision trees, which yield recommendations that are
explainable and hence more trusted by oncologists. While the design of core therapeutic strategies
for patients is unlikely to rely on AI beyond the use of this latter as an off-line support tool, there is a
high utility potential for the use of AI approaches such as reinforcement learning to control residual
disease and acquired resistance within an adaptive therapy framework. Indeed, a designed treatment
for an NSCLC patient which may include a neoadjuvant immunotherapy combined with
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chemotherapy (e.g., Nivolumab with Platinum chemotherapy) followed after surgery with Osi-
mertinib as an adjuvant therapy, will need to be complemented with additional decisions about the
optimal duration of adjuvant therapy and the subsequent treatments necessary to deal with residual
disease and acquired resistance. These treatment decisions may be driven by a reinforcement
learning approach that adapt adjuvant treatment to achieve long-term remission based on disease
state monitoring using ctDNA-based liquid biopsy techniques. Assuming a slow evolution of the
disease at this stage of care for the cancer patient, it may be clinically safe to extend more latitude for
reinforcement learning to explore the use of a larger set of therapies applied at the minimum
effective dose. However, this will require a continuous monitoring of disease state using ctDNA,
including the inferencing of clonal composition of minimal residual disease, which would serve as
an early warning tool against potential recurrence. Disease state feedback will also enable the AI-
based adaptive treatment to maintain a one-step ahead control of the disease. The reward function of
the reinforcement learning approach would in this case be defined based on the overall objective of
the adjuvant therapy. For instance, the choice to manage cancer in the face of acquired therapeutic
resistance may require the adoption of an evolutionary based approach that leverages clone
competition.17 In such ‘clone wars” setting, the reward of reinforcement learning may be defined as
a function of clone frequencies so as to maintain the cyclical stability of the lesion’s clone
composition and its therapeutic responsiveness.

Realizing the expected utility of AI as a catalyst for the improvement of cancer treatments will
ultimately require clinical trials on the use of adaptive treatment approaches in order to identify the
principal patterns of an effective and safe adaptive therapy. Insight gained from mining clinical
trials’ data about traces of AI recommended treatments, trajectories of disease states, and patient
toxicity are expected to guide the convergence towards clinically effective and safe sets of
treatments and combination thereof to power AI-enabled adaptive cancer therapy.

Conclusions

The rapidly accumulating clinical and molecular data about cancer has fueled the expectation that
AI powered by this big data would revolutionize cancer treatment decision-making. Recent projects
that explored potential applications of AI in precision oncology has shown that cancer treatment
presents unique challenges that are not easily overcome by machine-learned statistical models of the
disease. An exploration of these challenges points to the potential utility of AI as a catalyst in the
conception of a framework for adaptive cancer therapy. The framework would exploit continuously
updated data-driven clinical evidence towards more effective treatments of cancer. In particular, the
use of reinforcement learning to drive adaptive adjuvant therapy may be clinically feasible under the
assumption of slow evolution of the disease and a continuous monitoring of its course using ctDNA-
based biopsy techniques. However, clinical trials on the use of adaptive treatment approaches in
cancer care will ultimately be needed to crystalize the parameters and modalities of an effective and
safe AI-enabled adaptive cancer therapy.
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