
Multiagent and Grid Systems, vol. 2, no. 2, 2006, pp. 115 - 133.
The original publication is available at www.iospress.nl

1

A New Fault-Tolerance Framework for Grid Computing

Youcef Derbal

School of Information Technology Management
Ryerson University

350 Victoria Street, Toronto, ON, M5B 2K3
Tel: 1(416) 979-5000 x7918

yderbal@ryerson.ca

Abstract:
Fault detection and propagation in a computational grid requires a comprehensive framework that
takes in consideration the various grid environmental conditions such as the asynchronous nature
of communication and the uncertainty on the disseminated fault information. The paper presents a
fault-tolerance framework that provides the necessary models to manage the local faulty behavior
associated with the operation of hosted services. The framework includes a quantification
mechanism of the fault vulnerability of grid nodes and their hosted services. The resulting
measures of fault vulnerability are globally disseminated to enable the synthesis of decentralized
fault-tolerant decision making strategies.

 Keywords: Computational Grid, Fault-Tolerance, Fault Detector, Reliability, Service Request.

 1. Introduction
Computational grids (CGs) are large scale networks of geographically distributed aggregates of
service providing resource clusters that often span distinct management domains. As such they are
susceptible to a wide spectrum of potential faults where some of which may lead to failures in
service provision. The nature of these faults and their causes have been analyzed as part of a
taxonomy for dependable and secure computing developed for communication and computing
systems such as CGs [5]. A more focused categorization of faults in grids has been articulated to
include hardware, software and network related classes of faults [16]. The cumulative effect of
these faults translates into job failures, delayed job executions, denials of service, non-compliance
with user defined quality of service such as deadline for job execution, and violation of service
level agreements. With the adoption of a Service Oriented Architecture (SOA) as supported by the
Web Service Resource Framework (WSRF) standard [25], a gird service can be defined as an
arbitrarily composed hierarchy of other grid services. The reliable consumption of composed grid
services depends on the development of fault-tolerant workflow management strategies that take in
consideration the provision reliability of the entire chain of service composition with respect to the
classes of faults encountered in grid systems. In this respect, every grid node ought to be able to
estimate, in a timely fashion, the reliability of other nodes (and their hosted services) so as to
synthesize decisions that are tolerant of their peer’s faults. The large scale, dynamical and
distributed nature of CGs across geographically remote and distinct management domains poses
considerable challenges to the development of such fault-tolerant decision-making mechanisms.
Some of these challenges include the ubiquitous uncertainty on fault and resource state
information, the intermittent participation of resources, the heterogeneity of resources, network
latency, and the lack of central control. Current research has addressed some of these challenges
with varied degrees of success [16, 17, 23, 34-36]. However, there are many issues that remain
unaddressed; including the uncertainty associated with resource state and fault information, the
lack of formulated mechanisms for the timely dissemination of fault information across distinct

Multiagent and Grid Systems, vol. 2, no. 2, 2006, pp. 115 - 133.
The original publication is available at www.iospress.nl

2

management domains, and the absence of quantitative models of node and service reliability. This
paper presents a decentralized fault-tolerance framework that accounts for the uncertainty on the
resources’ state as well as their fault behavior. It includes a distributed network of node-bound
probabilistic models to quantify the extent of fault vulnerability of nodes and their hosted services.
The resulting quantification of reliability is exchanged among neighboring nodes using a
neighborhood-based dissemination mechanism to enable the synthesis of decentralized fault-
tolerant management strategies without incurring the drawbacks of a centralized registry.
 The paper is organized as follows: section 2 provides a literature review while section 3
presents the proposed fault-tolerance framework. The application of the framework to the
development of a fault-tolerant scheduling strategy is given in section 4, followed by simulation
results presented in section 5. Related works and conclusions are given in sections 6 and 7
respectively.

2. Literature Review
Research on fault-tolerant grid and high performance computing has traditionally focused on
recovery strategies implemented principally through checkpointing and job migration applied to
local networks of computing hosts under a centralized management [3, 18, 24, 28, 30-34]. While
checkpointing and job migration techniques should be part of any fault-tolerant grid management
framework, more emphasis needs to be given to monitoring, detection, and prediction of faults so
as to include preventive approaches in addressing the challenges of the grid computing
environment. This is particularly important since preventive maintenance measures would
diminish the need for frequent checkpointing and complex recovery procedures which may involve
rescheduling jobs on different execution environments [34]. Hence, it is not surprising that an
increasing attention is being given to prediction-based fault prevention strategies as a lever to limit
failure rate in the first place [16, 17, 23, 34-36]. In [34], a preemptive strategy is used to enable the
graceful transition of a service/node from a probable fault state, defined by a set of operational
conditions that indicate a susceptibility to pending failure, from a normal operating state. In [28], a
series of measures are taken to facilitate the implementation of management operations that are
robust to faults. One of these measures consists in a periodic observation of job execution servers.
If the status of the execution server is not satisfactory, the computation is migrated to a new server.
Other measures that were suggested are net yet implemented. These include restart and rollback
based on a regular and coordinated checkpointing applied to different execution servers. Lee et al.
[23] propose a fault recovery strategy where the migration decision is synthesized based on
checkpointing information and the potential performance benefit of selecting a substitute execution
site. In [16], dedicated agents associated with various categories of grid faults are used to
rejuvenate the system accordingly. For example, once certain conditions about a pending memory
shortage are observed, the associated agent migrate the jobs of the affected node to a different
node. Other works on fault-tolerance in grids are focused on utilizing job replication to ensure the
reliable execution of scheduled jobs [1, 4], while in [35] a scheme of high service availability is
implemented through backup replications.
Most of the above surveyed works do not address the uncertainty associated with resource state
and fault information. In addition, no clear mechanisms are proposed for the timely dissemination
of fault information across distinct management domains. Furthermore, these works don’t include
any quantitative models of node or service reliability. All these issues are of critical importance to
fault-tolerance since it has been shown that the lack of timely dissemination of the dynamic state
of resources and their level of reliability is one of the reasons behind job failure or delayed job
execution in real grid systems such as the Grid3 [17]. In light of the above survey, there is a need
for a comprehensive fault-tolerance framework that integrates the necessary mechanisms for fault
detection, propagation and estimation/prediction with proactive fault prevention as well as reactive

fault recovery strategies so as to cover what has been recognized as the central means to attain
dependability [5] (see Fig. 1). The framework has to address the cited challenges of the grid
environment and enable the development of assurance strategies of the quality of service (QoS).
These would undoubtedly be needed for the realization of the grid commercial potential. Quality of
service may be defined using performance metrics such as probability of service request handling
within a given deadline, expected job failure rate, or mean wait time before service. In order to
address the large scale grid distribution and the presence of distinct management domains, the
framework has to provide the necessary infrastructure for the integration of decentralized and
scalable fault-tolerant grid management strategies. The practical feasibility of such infrastructure
depends on the ability of the fault detection and propagation mechanisms to enable the timely
estimation of node and service reliability despite the distributed grid topology, the asynchronous
and fault prone communication, and network latency. Research on general distributed computing
systems has yielded some notable results that are relevant to these issues of fault detection and
propagation in grids [7-13, 20-22, 27]. In particular, It was proven that for an asynchronously
communicating set of processors it is impossible to reach a consensus about their states in the
presence of even a single fault [13]. However, different algorithms have been proposed to yield
approximate consensus under various assumptions on the degree of partial synchrony between
processors and the rate of faulty to reliable processors [10-12]. Furthermore, [8, 9] introduced the
notion of unreliable failure detectors that enables processors to eventually reach consensus about
their states provided that some implicit assumptions are made on the synchrony between the
parties involved [22]. This proven existence of realizable fault detectors indicates that it is indeed
possible to develop grid node-bound mechanisms to detect faulty behavior and propagate the
associated information to peer nodes in an asynchronous fashion and still eventually achieve an
approximate consensus using probabilistic approaches similar to those proposed in [6, 7].
Achieving such consistent grid-wide view of the state of services and nodes, even in probabilistic
terms, would enable an increased effectiveness of the collective resource exploitation through
decentralized decision-making processes.

 3. Grid Fault-Tolerance Framework
The grid under consideration is assumed to be a federation of service providers (nodes) each
making up a distinct management domain. Furthermore, it is assumed that each node is capable of
handling a service request that is either submitted by a user or delegated by a peer, provided that it
hosts the required service with sufficient capacity.
Consider a User Service Request (USR) submitted to a grid node. Let us assume that such request
requires for its handing the availability of a single grid service. Such availability would necessarily
go beyond the assertion that the required grid service is indeed deployed. In particular, the hosting
environment has to possess sufficient resource availability for the instantiation of the grid service
in question, the subsequent invocation of its operations, and the maintenance of it state. The
required resources may include CPU slots, RAM, other service components, special hardware
devices, disk space, swap space, memory cache as well as any required licenses of application
software that the service may need for its successful operation. If the service needs for its
execution a specific operating system, some processor architecture, or the presence of the
Microsoft .NET framework or the Java Virtual Machine (JVM) and possibly a required heap size,
then these would be part of the set of required resources. This resource base supports the set

{ }0 1 1, ,..., MS s s s −= of services deployed on the grid node in question. Although the competing
needs of the deployed services are managed through mechanisms of reservation and allocations,
the running instances of the various deployed services may exceed their allocated share of resource
usage. This may amount to a unintended violation of a Service Level Agreement (SLA) between
the consumer of the service and its provider [2] . The reason lies in the inability to make a

3

Multiagent and Grid Systems, vol. 2, no. 2, 2006, pp. 115 - 133.
The original publication is available at www.iospress.nl

4

categorical a priori assertion about the precise resource usage for the entire set of possible
scenarios of run-time behavior associated with a running service instance for a given service
request. This is exacerbated by the inaccurate or exaggerated job requirements provided by the
user [26]. The run-time exception scenarios are obvious reasons for the excess resource usage
beyond the allocated levels. One can conceive of a node control mechanism that monitors the
resource usage and terminate the tasks or processes of any service instance that exceeds its
allocated resource levels. However, such drastic approach may not be necessarily favorable
towards the desire to build a reliable hosting platform that is robust against moderate deviations
from some SLA. If these deviations are to be accepted, the mentioned mechanism of resource
usage control would have to include some dynamic prediction of the expected profile of resource
usage by the violating services. This would enable the synthesis of a more appropriate decision as
to the termination of the associated tasks and processes. In all cases, momentary or transient
violations of SLAs by one or more services are highly probable. As a result, running service
instances are vulnerable to failure before completion of their tasks because of unexpected depletion
of resources such as RAM or disk swap for example. The various sources of these failures are
illustrated in the service fault tree given in Fig. 2 and inspired by the taxonomy given in [16].
One of the identified sources of faults in a grid environment is resource depletion. The competing
needs of hosted services with many spawned instances, and the uncertainty on the specification of
their requirements create unforeseen scenarios of contentious resource usage (see Fig. 3). These
often lead to resource starvation of running service instances and would ultimately result in
timeouts or run-time exceptions.
The multiple fault sources in a grid environment translate, from the service provision view point,
into service unavailability, or service failures. In the first case, the service request handling may
still be in progress but is hindered by contentious resource usage or depletion. This would
ultimately result in a timeout if no corrective intervention is applied. For instance, it may be
possible to save the current execution state through checkpointing and resumption of the request
handling from the last checkpoint as soon as the service is restored to its normal operational state
through graceful restart and re-initialization. In the second case, the service request handling has
terminated abnormally before completion of the tasks being executed. As a result, the processing
completed up to the failure event would be lost unless checkpointing is periodically applied
throughout the lifecycle of the service operation.

3.1 Service and Node Reliability
The coupling between the potential sources of faults and their unpredictable manifestations in a
grid environment in addition to the uncertainty on the resource state information and the service
operating conditions suggest that deterministic models of fault predictions may be inappropriate
and ineffective. This provides a sufficient motivation to view the operational behavior of a service
instance as a stochastic process{ }, 0,1,2,...nX n = that takes on different states from the finite set
Ω of possible operational states described below (see Fig. 4):

• Robust State (R): This corresponds to service request handling void of any significant error

conditions that might compromise the expected performance or lead to an abnormal
termination of the service instance.

• Vulnerable State (V): The running service instance exhibits a regular behavior but with

degraded performance or error conditions that might lead to failure. Usually, this state of fault
vulnerability is reached as a result of process aging of the service instance which may be

caused by many environmental factors including memory leakage and cumulative data
corruption [15].

• Failure State (F): The service instance is not responding to received requests because of crashed

processes, resource depletions such as run-time memory shortage or software bugs in a
supporting infrastructures such as application and database servers.

• Maintenance State (M): Associated with a preemptive re-initialization of the service instance

after completing the associated pending service requests. Once the maintenance is triggered
new requests are redirected to another instance of the service, if available, until the maintained
service instance is returned to a robust state.

The proposed service maintenance is similar to the concept of rejuvenation of software
applications that was first introduced in [15] to address the issue of fault-tolerance for long running
applications such as those encountered in telecommunication systems. Service maintenance may
be applied to all instances of a service and as such it may include de-fragmentation of disk storage,
re-spawning of processes, and restarting of database and application servers. However, unlike
software rejuvenation which is regularly scheduled, the proposed service maintenance is to be
triggered whenever some identified fault-vulnerable operating conditions are observed by the node
management system. Some of these conditions may include a pending run-time memory shortage
or the number of open database connections exceeding some upper limit. One clear advantage of
the proposed preventive maintenance is the ability to gracefully re-initialize a service instance after
checkpointing in order to enable the resumption of request handling from the state where it was
halted. As a result, request handling delays would be much less significant than if a service failure
occurs unpredictably ensuing loss of work done up to the failure time unless an expensive periodic
checkpointing is in place. In addition, the degraded performance of a service or its non-availability
caused by a preventive maintenance initiated during periods of low service load would have a
lower negative impact on the quality of service provisioning compared to the effect of
unpredictable failures that may occur during periods of high service load.

Given the introduced stochastic model of service operation, let us assume that whenever the
process enters state it remains there for a random amount of time having meani∈Ω iµ before it
goes to state where it remains for a mean time ofj∈Ω jµ . The resulting process is a non-
homogenous semi-Markov process [14, 29]. Furthermore, if whenever a process returns to state

 it is said that a cycle has been completed and a reward is given in the amount of time that
was spent in state i during the cycle, then the process is also a renewal-reward process [29]. Hence,
the probability

i∈Ω

ip of being in state i is equal to the proportion of time that the process has spent in
state i , namely [29]:

i
i

j
j

p µ
µ

∈Ω

=
∑

 (1)

The mean time iµ a process stays in state i is estimated at the time index as follows: 0n ≥
1

()

0()

iN
i

k
k

i
i

T
n

N
µ

−

=

∆
=
∑

 (2)

5

Multiagent and Grid Systems, vol. 2, no. 2, 2006, pp. 115 - 133.
The original publication is available at www.iospress.nl

6

Where is the number of monitored transitions out of state i up to the discrete time index n , and
is the observed time interval spent in state i prior to the

iN
()i

kT∆ k th− transition. In order to quantify
the reliability of a service, a reliability measure () [](,) : 0 1s nΦ Σ →

v

, is defined as follows:

(,) rs n p pΦ = + (3)

Where rp and vp are the probabilities of being in the robust and vulnerable states respectively and
are estimated using (1) and (2). represents the set of services hosted by the grid, and is the set
of natural numbers. Note that given (1) and (2) we have

Σ
1i

i
p

∈Ω

=∑ and hence the relation

 is always true. The above stochastic model of service operation provides the
foundation for the development of a grid wide distributed reliability model. Towards this purpose,
assumptions on the topology of the target grid system need to be made before defining the
proposed models of service and node reliability respectively.

0 (,)s n≤ Φ ≤1

Definition 1: A grid neighborhood is any arbitrary grouping of nodes that regularly share their
identity, and service availability information.

As a corollary of the above definition, two nodes are said to be neighbors if there exists a
neighborhood of which they are both members. Nodes may belong to more than one neighborhood
at a time and may join or leave a neighborhood at will. The identity information includes node
ports and IP addresses as well as any other parameters necessary for the establishment of a
communication link. The service availability information should, at a minimum, include the names
as well as the descriptions and current capacities of hosted services. Preferably, the groupings are
made among geographically proximate nodes, partitioning hence the grid into a logical collection
of contiguous neighborhoods.

Definition 2: A service hosted by a grid node is said to be suspect (unreliable) at time if and
only if

s h n
(,)s n γΦ ≤ . Since is a probability measure,(,)s nΦ (]0 1γ ∈ should be greater than 0.7 so

as to avoid the region of uncertainty.

The above service reliability characterization allows grid nodes to classify the services provided by
their peers as reliable or suspect. An appropriate dissemination of such information would enable
the synthesis of fault-tolerant decision-making processes that involve the consumptions of the
services in question. The reliability of a service as defined above depends on the ability of the
hosting environment to apply fault preventative maintenance processes as well as timely recovery
strategies to address the various sources of faults listed in the previous section. One reasonable
observation might be that the effect of the node-bound fault-tolerance strategies would manifest
themselves uniformly on the reliability of all hosted services. This suggests the relevance of
defining the notion of node reliability based on the collective status of hosted services.

Definition 3: Let and be the set of services hosted by node and deemed
reliable and suspect by node respectively. Then node is said to be suspect (unreliable) by
node at some discrete time if and only if:

() ()y
x nΓ () ()y

xU n x G∈
y G∈ x

y n
() ()() . ()y
x xU n nβ> Γ y (4.1)

()

()

() ()

()1
()y

y
z

y y
z z

U n

n
β

∈ℵ

=
ℵ Γ

∑ (4.2)

G is the set of gird nodes, A denotes the cardinality of set A , and is the set of nodes
neighboring . The choice of

()yℵ

y G∈ β is based on the neighborhood ratio of suspect versus reliable
services. The categorization of nodes according to their reliability serves as a prescreening process
that enables a fast convergence of decentralized grid decision-making mechanisms. For example,
in the case of a decentralized grid scheduling, a suspect node may, in some cases, be eliminated
from the list of candidate solutions if it is known to be unreliable. This would take place before
any expensive search is undertaken to assert whether such a node hosts a sought after service with
sufficient capacity and acceptable reliability.

In this paper, an assumption is made that information about hosted services is maintained in
distributed service registries attached to nodes. Furthermore, the content of these registries is
assumed to be shared with neighboring nodes at a regular interval of time so as to allow the
implementation of a decentralized service discovery strategies. Inadequate update frequency and
freshness of the service availability information would affect the performance of decision-making
processes such as scheduling. Such effect may translate into service denials if the necessary
resources are found to be unavailable once the request reaches the provider node after being
delegated on the assumption that this last has the necessary capacity to handle the request. In the
case of the proposed framework, the uncertainty on the knowledge of resource state is implicitly
accounted for in the proposed models of reliability. Indeed, the observed occurrences of service
denials, some of which may be caused by resource state uncertainty, are taken into account in the
computation of the state probabilities of the models in question. The associated reliability
information is then disseminated as a feedback to potential consumers so as to improve their future
scheduling decisions in the face of uncertain grid state information.

3.2 Neighborhood Dissemination of Reliability Information

7

In a service oriented grid architecture, one of the principal strategies of grid resource exploitation
is service request delegation. A user service request submitted to a given node is first assessed for
local handling. If the local capacity of the involved service is insufficient, a delegation to a peer-
node with sufficient service capacity is performed according to some grid scheduling strategy. In
this respect, a delegating node needs to be aware of the reliability of services hosted by peer nodes
so as to ensure the maximum likelihood that its delegated requests will be successfully handled
even in the face of potential faults resulting from the hosting environment or the jobs associated
with the service request itself. For this purpose, the service reliability information needs to be
disseminated across the grid. The large scale distribution of a grid requires the dissemination
strategy to take in consideration the environmental factors such as limited storage space, network
latency and finite bandwidth. The influence of these factors is directly dependent on the density of
disseminated information and the scope of dissemination. On one extreme end, a large amount of
reliability information universally communicated among all grid nodes would increase the network
traffic and latency, and deplete more local storage and processing capacity without necessarily

Multiagent and Grid Systems, vol. 2, no. 2, 2006, pp. 115 - 133.
The original publication is available at www.iospress.nl

8

x

achieving the desired universal awareness since the increased network latency would render the
disseminated information to distant nodes stale. The other extreme end of no dissemination of
reliability information would be equally non-intuitive given the wide spectrum of conceivable
strategies between the two extremes that may achieve a satisfactory tradeoff between awareness
and scalability costs. The proposed dissemination strategy is devised to strike such a balance by
limiting the density of communicated information to that of the service reliability measure and the
set of suspect neighbors. Furthermore, the scope of dissemination is restricted to the neighboring
nodes. In particular, referring to Fig. 5, where the lines linking the nodes define the pathways for
the exchange of fault/reliability-related information, the dissemination strategy consists of two
elements:

• Each node such as h disseminates the reliability measures associated with its hosted
services to its immediate neighbors such as which it will then use to update the set

 of services deemed reliable by , as well as the set of

services deemed suspect.

x

()

() ()

x

x
z

z∈ℵ

Γ = Γ∪ x
()

() ()

x

x x
z

z

U U
∈ℵ

= ∪

• Each node such as disseminates the set of suspect nodes x ()
0
xϒ to all its neighboring nodes.

The set is compiled based on the maintained set of suspect services and does not
include the sets of suspect nodes that have been disseminated by neighboring nodes. Note
that the set of suspect nodes known to a node is equal to

()
0
xϒ

x
()

() () ()
0 0

x

x x

z∈ℵ

zϒ = ϒ ϒ∪ .

Given the above dissemination approach, the following relationships hold true for the bounds on
the size of the lists of suspect nodes and suspect services respectively:

() 2
max max()x n N Nϒ ≤ + (5)

()
max max() .xU n N M≤ (6)

maxM is the maximum number of services that can be hosted by a node, and is the maximum
number of neighbors that a grid node may have. Relation (5) results from the fact that in the worst
case, a node would deem unreliable all of its neighbors and would receive from each one of its
neighbors a list that reflects the worst case scenario where they in turn deem all their neighbors to
be unreliable. The bound given in (6) sprung from the worst case scenario where every service
hosted by every neighboring node is unreliable. Note that the set of reliable services can be
inferred from the set of suspect services since each node has full knowledge about the service
offerings of its neighbors. The same applies to the set of suspect nodes and the set of reliable
nodes. As a result, only one category of information (suspect or reliable) needs to be maintained
for nodes and services. Using relations (5) and (6), the size of the registry that holds the
information about service and node reliability can be bounded as follows:

maxN

x

RSZ

()2
max max max maxRSZ N N v N M u≤ + + (7)

Where u is the required storage space associated with the reliability information of a single service
entry which includes the service name, and the node ID. is the storage space associated with the
reliability information of a single node which in this case is no more than the ID of the suspect
node. Allocating 32 Bytes for the service name and 4 Bytes for the storage of a node ID
respectively would result in Bytes and

v

36u = 4v = Bytes. Fig. 6 illustrates the bound on the

required storage size of the registry as a function of the maximum number of services and the
maximum number of neighbors respectively. In practical terms, the registry would be implemented
using a relational database or an LDAP directory bound to the node. Judicious caching of the
registry in the node’s run-time memory would ensure a faster information retrieval. However,
since the registry is local to the node and exclusively accessible to its management mechanisms,
even in the absence of caching the queering performance would not degrade with the increase of
users or gird size as would be the case for a centralized grid registry that holds reliability
information.

3.3 Framework Integration
The grid fault-tolerance framework outlined conceptually in Fig. 1 provides a comprehensive
approach to fault-tolerant provision and consumption of grid services. As outlined above, the
strategies and models associated with the framework are decentralized requiring hence an
independent integration with the grid node management system. Fig. 7 illustrates a nominal node
architecture geared towards the realization of the framework. As a whole, the framework
encourages local prevention and recovery measures with global awareness of the reliability of peer
service offering. The current work is focused on some elements of the framework, in particular the
models of reliability and the dissemination strategy. As a result, the reactive recovery strategies
and issues are not addressed. However, one issue that needs clarification is the open nature of the
framework towards the inclusion of various methods of fault prevention and recovery. This is
possible partly because of the use of a reliability model that considers the overall operation of
deployed services as opposed to individual jobs, processes or resources such as CPUs or RAM.
However, such reliability model is still being driven by the monitoring of the individual resources
and running processes underlying the operation of hosted services. Furthermore, there are no
restrictions in the framework as to the information and the strategies that might be used to trigger a
proactive maintenance. Similarly, the framework can accommodate any checkpointing and
recovery strategy that can be implemented in a decentralized fashion.

 4. Application to Fault-Tolerant Grid Scheduling
The proposed fault-tolerance framework and its service and node models of reliability provide a
quantification of the hosting environment’s ability to support a reliable provision of hosted grid
services. This section explores the application of the framework to the synthesis of fault-tolerant
grid scheduling decisions. For this, let us assume that a user submitted a service request,
denoted sru , to node h G∈ . sru requires the availability of a single instance of grid service for
which node does not have the necessary capacity. A service discovery scheme has yielded a
solution set Θ of grid nodes whose hosting environments meet the requirement of the
submitted

*s
h

sru . Given the dissemination scheme of reliability information, the set Θ can be
partitioned into seven subsets , 0Θ 1Θ , 2Θ , 3Θ , 4Θ , 5Θ , and 6Θ as shown in Table 1. The
partitioning is based on the fact that nodes don’t have access to any reliability information about
services and their hosting nodes if these are located within a distance greater than two hops away.
Furthermore, nodes don’t have access to the reliability information about services other than those
hosted by neighbors. Given these constraints, the question then is: What are the nodes, among the
elements of , that would provide the most reliable handling of the service request if it is
delegated to them?

Θ

Using the partition of the solution set obtained through a discovery process, the following fault-
tolerant delegation algorithm implements a multi-step approach to the search for a target node
hosting a reliable instance of the required service.

*y

9

Multiagent and Grid Systems, vol. 2, no. 2, 2006, pp. 115 - 133.
The original publication is available at www.iospress.nl

10

 Begin
 cov (,)srserviceDis ery h uΘ←

► If SCHEDULING_TIMEOUT || Θ =∅
 GOTO End
 End If
 () 0 1 2 3 4 5 6, , , , , , (,partition hΘ Θ Θ Θ Θ Θ Θ ← Θ)

)

)

 If Then 0Θ ≠∅
 0* (y randElementChoice← Θ
 GOTO End
 Else If Then 1Θ ≠ ∅
 1* (y randElementChoice← Θ
 GOTO End
 Else If Then 4Θ ≠∅
 4()h randElementChoice← Θ
 4Θ←Θ
 GOTO ►
 Else If Then 5Θ ≠∅
 5()h randElementChoice← Θ
 5Θ←Θ
 GOTO ►
 Else
 6()h randElementChoice← Θ
 6Θ←Θ
 GOTO ►
 End If
 End

The function returns a randomly chosen element of the input set,
and returns a solution set of nodes that host the required service with a
sufficient capacity. The underlying strategy of the algorithm views the reliability of the service to
be more important than that of the node. This is motivated by the fact that a hosting environment
may provide a more fault-tolerant handling of a select subset of services to the exclusion of all the
other services. In this case, the node may in fact be classified as suspect, while the select subset of
services is still categorized as reliable. Note that the scheduling of the service request is not
performed if the solution set does not include a node that offers a reliable service. Instead, a
delegation to chosen nodes is performed based on their proximity. In this choice the subsets

(.)randElementChoice
cov (.)serviceDis ery

Θ

2Θ
and are excluded since they are known to host suspect instances of the service in question.
After delegation, a repartitioning of the reduced solution set is performed based on the reliability
information available to the new home node and the selection process is repeated until the service
request is scheduled or a scheduling timeout period elapses. The above scheduling approach is
conservative and may be improved using a more optimal choice of the solution set of nodes.
However, the issue at hand is not the performance of the scheduling algorithm but rather its fault-
tolerance. In this respect, the above scheduling strategy is fault-tolerant in the sense that it limits

3Θ

the scheduling of a service request to nodes for which there is an assurance about their expected
reliability or that of the target services they host.

5. Simulation Results
The proposed fault-tolerance framework is validated through a simulation of the developed fault-
tolerant scheduling approach. The Midland Grid Emulator developed by the Author is used for this
purpose (see Fig. 8). The emulated grid may be configured for an arbitrary number of nodes and
deployed services respectively. The stochastic model of service operation is executed as a Java
daemon thread. An exponential distribution is used to simulate the inter-arrival time of events that
compromise the operational integrity of the service. For a balanced fault injection the same rate is
used for all nodes and services, while different randomly selected rates for different nodes and
services are used for an unbalanced fault injection.

Service vulnerability is emulated using a counter that takes values between 0 and 100. Beyond
25% of the counter’s maximum value the service is considered vulnerable and enters the failure
state once the 100% level is reached (see Fig. 9). Each arrival of a compromising event increases
the counter by a certain percentage of its maximum value while recovery and maintenance
operations reset the counter after a random amount of time spent in the failure and maintenance
states respectively. The proposed stochastic model of Fig. 4 includes a direct transition between
the robust and failure states. However, this is not considered in the simulation with the assumption
that real systems rarely succumb to catastrophic failures without experiencing a prior state of
vulnerability observed through error and fault conditions.

In order to account for the bursty nature of real grid service request distributions, the number of
simultaneously arriving service requests is simulated using a Pareto process where the range and
the shape are set to 100 and 1 respectively. The inter-arrival time of the Pareto distributed service
request load for the various nodes is simulated using a Poisson process.

The goal of the fault-tolerance framework is to maintain a desirable level of service availability in
the presence of faults as well as to limit delays and abnormal terminations that are caused by
unpredictable failures. These desirable operational properties of the hosting environment
contribute to the overall reliability of service provisioning as experienced by consumer nodes. In
order to quantify the performance of the framework with respect to these properties, the following
fault-tolerance indicators are defined:

()
()

f
f

R

n T
n T

η = (8)

()
()

d
d

R

n T
n T

η = (9)

fη is the failure ratio and dη is the ratio of service denial resulting from the unavailability of
requested services. is the total grid-wide number of service requests submitted within the
intervalT of time.

Rn

fn is the total grid wide number of failed service requests during the interval
of time, and is the total grid wide number of service requests that could not be handled

because of service unavailability during the interval T of time.
T dn

The commercial grid potential relies on the ability to construct an open service provisioning
system where new resources can be added as needed in order to handle increased user load or more
computationally demanding applications. The realization of such potential is dependent on the
scalability of the grid decision-making mechanisms such as service discovery, scheduling and load

11

Multiagent and Grid Systems, vol. 2, no. 2, 2006, pp. 115 - 133.
The original publication is available at www.iospress.nl

12

balancing. In this respect, the contribution of the framework to the fault-tolerant properties of these
mechanisms ought to lock steps with the scalability performance of these lasts in terms of the
above defined metrics.

Using the defined fault-tolerance indicators, the performance of the proposed fault-tolerant random
delegation scheduling (FTRDS) strategy is compared to a similar strategy of random delegation
scheduling (RDS) that does not rely on the reliability information disseminated among neighbors.
It is important to note here that random selection of available resources, on which both FTRDS and
RDS are based, may not be the best scheduling strategy. However, the focus here is not on the
performance of the scheduling strategy but rather on the performance differential that results from
the utilization of the fault-tolerance framework.

In the first set of simulations, both RDS and FTRDS rely on a service discovery mechanism that
supplies a candidate set of nodes that are believed to have the required service capacity at the time
of the delegation decision. Figs 10 and 11 illustrate the ratios of failure and service denial for
various grid sizes with a balanced fault injection throughout the grid. For an unbalanced fault
injection the ratios of failure and service denial are given in Figs 12 and 13. The simulation results
illustrate the substantial improvement induced by the utilization of the fault-tolerance framework.
For both balanced and unbalanced fault injections the failure ratio is reduced by up to 50% from its
level obtained for the RDS strategy. Similarly, the FTRDS strategy exhibits a dramatic
improvement with respect to the ratio of service denials when compared to the RDS strategy. The
reliance on neighborhood based delegation and dissemination of state information implies that
both scheduling strategies use a resource set made up of closer nodes. Consequently, an increase in
the size of the grid does not have drastic effects on the scheduling performance in general and the
fault tolerant property in particular as illustrated in Figs 10-13.

 The effectiveness of the preventive maintenance and the effect of the maintenance threshold on
the ratios of failure and service denials are illustrated in Figs 14 and 15. The simulation is
conducted for a grid of 30 nodes where the maintenance threshold was varied from 25% to 95% of
the vulnerability level where a failure would immediately follow. The simulation results suggest
that the lowest level of failure ratio is achieved when the maintenance threshold is closest to the
lower bound of the vulnerability zone. This is plausible since a lower threshold of maintenance
results in a high frequency of maintenance and would increase the service immunity against
crossing the vulnerability threshold into the failure state. As the maintenance threshold is
increased, such immunity is decreased resulting in an increased failure ratio for both balanced and
unbalanced fault injections (Figs 14 and 15). For service denials which equally cost the provider
in terms of reliability and dependability of their service provision, a higher frequency of
maintenance (lower maintenance threshold) may be expected to result in more service denials
incurred during maintenance downtime. This pattern, although weakly exhibited for the case of
unbalanced fault injection, is overall not strongly manifested in the simulation results. One reason
for this might be the cumulative and nonlinear effect of failures on service denials. Indeed, as the
failure ratio increases with a decreased maintenance frequency, the increased occurrences of
failures would result in the unavailability of corresponding services. Consequently, the anticipated
decrease of service denials resulting from less maintenance downtime is not materialized because
of the effect of service unavailability caused by failures.

6. Related Works
Some surveyed works focus on the synthesis of fault-aware decision making mechanisms while
others are concerned with system recovery after failure. Given the costly checkpointing associated
with the later approach, proactive fault-tolerant strategies that minimize unpredictable failures
have also been explored in the literature. These works are related in various degrees to the

13

proposed approach of fault-tolerant grid management. However, there is a limited number of
research efforts that are strongly related to this work in their focus on monitoring-based proactive
fault-tolerance approaches [16, 17, 19, 26]. In [17] various scheduling strategies were considered
where feedback information about the state of resources and the reliability of their operations is
utilized. The monitored information includes the number of queued jobs, the number of cancelled
jobs as well as the number of unfinished jobs associated with a given grid node. Using this
information, measures such as node load and node reliability where defined and subsequently used
to inform the scheduling process. Experimental tests on the Grid3 system showed that feedback-
based scheduling reduces the number of job resubmissions and delivers a better job completion
time compared to open-loop scheduling. These results illustrate the intuitively expected fault-
tolerant quality of a feedback scheduling approach. However, given the small number of nodes
making up the grid (25 nodes) the scalability of the approach cannot be asserted. Furthermore, the
job related node performance information is utilized in an ad-hoc fashion. No attempt is made to
develop a model that captures the dynamics of node reliability so as to provide a more effective
prediction of its behavior. Such model would be necessary as grid systems are expected to provide
services that rely on extensive infrastructures such as application servers, database servers, and
specialized devices. In this respect, in addition to the job-related performance information, the
model in question would have to accommodate resource state and reliability information such as
server throughput, transaction rates, service up-time, and network health metrics. In addition to the
absence of an integrated model of reliability that addresses the challenges encountered in grid
systems, the approach reported in [17] is formulated for a single management domain avoiding
hence the consideration, otherwise necessary, of the dissemination of state and reliability
information across a distributed grid system that spans distinct management domains.
In [16], dedicated agents associated with the various categories of grid faults are used to rejuvenate
the system accordingly. For example, once certain conditions about a pending memory shortage
are observed, the associated agent migrate the jobs of the affected node to a different node. This
agent-oriented approach is promising because of the potential for the development of a scalable,
distributed network of agents able to independently correct local failures or reduce the
vulnerability towards their occurrences while being guided by some broader guidelines of QoS
formulated at the grid level. However, the results reported in [16] are limited to the consideration
of a centrally managed cluster and an application bound implementation of the fault-tolerant
services. In [19], the failure detection is based on a dynamic grouping of nodes with an elected
leader that detects a failure in the group through a timeout applied to a heart beat mechanism. Once
a failure is detected by a leader, this last broadcast the associated information to all group leaders
in the grid as well as the members of its group. While the detection scheme is scalable, the
dynamic grouping is susceptible to instability during node joining or leaving. Furthermore, the
awareness of node failures is not sufficient to quantify node reliability with respect to partial
failures associated with process crashes or failures of some classes of services hosted by the node.
In other works, it has been noted that given the unavoidable system failures and the inaccurate or
exaggerated job requirements provided by the user, it is impossible for a grid system to provide a
100% QoS guarantee [26]. This observation has provided the motivation for a proposed fault-
aware scheduling approach for a supercomputing cluster whereby the user and the system
negotiate a probabilistic QoS guarantee such as: “job x shall be completed by deadline d with a
probability of p” [26]. In order to achieve such guarantee, the scheduling strategy utilizes a set of
algorithms that predict critical events that lead to job failures based on monitored health
information about node state and load. In particular, the prediction mechanism provides an
estimate of the probability that a submitted job with an expected execution time will fail if
scheduled on a given node. The job is scheduled if the QoS guarantee is deemed achievable
otherwise the user is consulted on whether they wish to relax the QoS requirement in favor of a

Multiagent and Grid Systems, vol. 2, no. 2, 2006, pp. 115 - 133.
The original publication is available at www.iospress.nl

14

higher probability of success. The simulation of a cluster made up of 125 nodes suggests an
improved reliability and performance of the system. The underlying idea of negotiating a desirable
risk strategy between the user and the supercomputing cluster is a pragmatic approach that gives
due consideration to the uncertainty on the expected grid performance. However, its applicability
to a grid system that spans multiple administrative domains would require a decentralized
performance prediction strategy and an adjunct mechanism of dissemination of performance and
reliability information.
Compared to these related works the proposed fault-tolerance framework equally recognizes that
fault-tolerant decision making strategies benefit from state feedback information about resource
usage, operational performance, fault conditions, and network health. However, instead of an ad-
hoc utilization of state feedback information, monitored state information is used in the proposed
framework to drive a synthesized model that characterizes the reliability of nodes and services. In
contrast to the mentioned related works, the proposed fault-tolerance framework is decentralized in
nature so as to address the presence of distinct administrative domains within a grid. Overall, the
proposed framework is distinguished from the surveyed related works by it comprehensive
approach to the quantification of service and node reliability in addition to the provision of a light
mechanism for the dissemination of reliability information so as to enable the implementation of
decentralized and scalable fault-tolerant management strategies.

7. Conclusion
A decentralized fault-tolerance framework for grid computing is proposed. It relies on a distributed
network of node-bound probabilistic models of service and node reliability respectively. The
associated reliability information is selectively exchanged among neighboring nodes using a
dissemination mechanism that is shown to be light in its requirement for data exchange density and
overhead storage. Comparative simulation results show that the proposed framework is scalable
and improves the performance of a grid scheduling strategy with respect to fault-tolerance.
Furthermore, the proposed node-bound proactive maintenance strategy is shown to reduce service
failure ratio without increasing the ratio of service denial beyond the level that would be
experienced in the absence of a preventive maintenance of service operation. For future works,
further elaboration of the model of service operation is the next logical step towards the practical
implementation of the framework. In particular, it would be valuable to study the effect on service
denials and failures of a dynamically set maintenance threshold trigger that is based on some
appropriate model of the hosting environment’s variables such as load, resource utilization, and
past operational behavior. This may, for example, be used to implement a maintenance regime that
avoids high load periods and achieve as a result a lower service downtime.

Acknowledgments
I am grateful to Professors Aziz Guergachi and Ojelanki Ngenyama for gracefully sharing the
computing resources used to run the simulations reported in this paper.

References
[1] J. H. Abawajy, Fault-tolerant scheduling policy for grid computing systems, in:

Proceedings - International Parallel and Distributed Processing Symposium, IPDPS 2004,
IEEE Computer Society, Los Alamitos, United States, 2004, pp. 3289-3295.

15

[2] R. Al-Ali, A. Hafid, O. Rana, and D. Walker, An approach for quality of service adaptation
in service-oriented Grids, Concurrency Computation Practice and Experience 16 (2004),
401-412.

[3] G. Allen, W. Benger, T. Goodale, H.-C. Hege, G. Lanfermann, A. Merzky, T. Radke, E.
Seidel, and J. Shalf, Cactus Code: a problem solving environment for the grid, in: IEEE
International Symposium on High Performance Distributed Computing, Proceedings,
Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ, USA, 2000, pp. 253-
260.

[4] C. Anglano and M. Canonico, Fault-tolerant scheduling for bag-of-tasks grid applications,
in: Lecture Notes in Computer Science, Springer Verlag, Heidelberg, D-69121, Germany,
2005, pp. 630-639.

[5] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, Basic concepts and taxonomy of
dependable and secure computing, IEEE Transactions on Dependable and Secure
Computing 1 (2004), 11-33.

[6] M. Ben-Or, Another advantage of free choice (Extended Abstract): Completely
asynchronous agreement protocols, in: Proceedings of the second annual ACM symposium
on Principles of distributed computing, 1983, pp. 27 - 30.

[7] G. Bracha and S. Toueg, Asynchronous consensus and broadcast protocols, Journal of the
ACM 32 (1985), 824-840.

[8] T. D. Chandra and S. Toueg, Unreliable failure detectors for reliable distributed systems,
Journal of the ACM 43 (1996), 225-267.

[9] T. Deepak Chandra, V. Hadzilacos, and S. Toueg, Weakest failure detector for solving
consensus, Journal of the ACM 43 (1996), 685-722.

[10] D. Dolev, C. Dwork, and L. Stockmeyer, On the minimal synchronism for distributed
consensus, Journal of the Association for Computing Machinery 34 (1987), 77-97.

[11] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl, Reaching approximate
agreement in the presence of faults, Journal of the Association for Computing Machinery
33 (1986), 499-516.

[12] C. Dwork, N. Lynch, and L. Stockmeyer, Consensus in the presence of partial synchrony,
Journal of the Association for Computing Machinery 35 (1988), 288-323.

[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of distributed consensus with
one faulty process, Journal of the Association for Computing Machinery 32 (1985), 374-
382.

[14] S. S. Gokhale, T. Philip, and P. N. Marinos, Non-homogeneous Markov software reliability
model with imperfect repair, in: Proceedings -IEEE International Computer Performance
and Dependability Symposium, IPDS, IEEE, Los Alamitos, CA, USA, 1996, pp. 262-270.

[15] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, Software rejuvenation: analysis,
module and applications, in: Proceedings of the Twenty-Fifth International Symposium on
Fault-Tolerant Computing (FTCS-25), 1995, pp. 381 - 390.

[16] M. T. Huda, H. W. Schmidt, and I. D. Peake, An Agent Oriented Proactive Fault-Tolerant
Framework for Grid Computing, in: Proceedings of the First International Conference on e-
Science and Grid Computing, 2005, pp. 304- 311.

[17] J.-U. In, P. Avery, R. Cavanaugh, L. Chitnis, M. Kulkarni, and S. Ranka, SPHINX: A
fault-tolerant system for scheduling in dynamic grid environments, in: Proceedings - 19th
IEEE International Parallel and Distributed Processing Symposium, Institute of Electrical
and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States,
2005, pp. 12b-12b.

Multiagent and Grid Systems, vol. 2, no. 2, 2006, pp. 115 - 133.
The original publication is available at www.iospress.nl

16

[18] K. A. Iskra, F. Van Der Linden, Z. W. Hendrikse, B. J. Overeinder, G. D. Van Albada, and
P. M. A. Sloot, The implementation of dynamite - An environment for migrating PVM
tasks, Operating Systems Review (ACM) 34 (2000), 40-55.

[19] A. Jain and R. K. Shyamasundar, Failure detection and membership management in grid
environments, in: Proceedings - IEEE/ACM International Workshop on Grid Computing,
IEEE Computer Society, Los Alamitos, CA 90720-1314, United States, 2004, pp. 44-52.

[20] P. Jayanti, T. D. Chandra, and S. Toueg, Cost of graceful degradation for omission failures,
Information Processing Letters 71 (1999), 167-172.

[21] P. Jayanti, T. D. Chandra, and S. Toueg, Fault-tolerant wait-free shared objects, Journal of
the ACM 45 (1998), 451-500.

[22] M. Larrea, A. Fernandez, and S. Arevalo, On the implementation of unreliable failure
detectors in partially synchronous systems, IEEE Transactions on Computers 53 (2004),
815-828.

[23] H. M. Lee, S. H. Chin, J. H. Lee, D. W. Lee, K. S. Chung, S. Y. Jung, and H. C. Yu, A
resource manager for optimal resource selection and fault tolerance service in grids, in:
2004 IEEE International Symposium on Cluster Computing and the Grid, CCGrid 2004,
Institute of Electrical and Electronics Engineers Computer Society, 2004, pp. 572-579.

[24] M. J. Litzkow, M. Livny, and M. W. Mutka, Condor - a hunter of idle workstations, in:
Proceedings - International Conference on Distributed Computing Systems, IEEE,
Piscataway, NJ, USA, 1988, pp. 104-111.

[25] OASIS, Web Services Resource Framework (WSRF) - http://docs.oasis-
open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf, (2005).

[26] A. J. Oliner, L. Rudolph, R. K. Sahoo, J. E. Moreira, and M. Gupta, Probabilistic QoS
guarantees for supercomputing systems, in: Proceedings of the International Conference on
Dependable Systems and Networks, Institute of Electrical and Electronics Engineers
Computer Society, Piscataway, NJ 08855-1331, United States, 2005, pp. 634-643.

[27] M. Pease, R. Shostak, and L. Lamport, Reaching Agreement in the presence of faults,
Journal of the ACM 27 (1980), 228-234.

[28] J. S. Plank, H. Casanova, M. Beck, and J. J. Dongarra, Deploying fault tolerance and task
migration with NetSolve, Future Generation Computer Systems 15 (1999), 745-755.

[29] S. M. Ross, Introduction to Probability Models, Academic Press, Inc., San Diego, CA,
1989.

[30] S. S. Vadhiyar and J. J. Dongarra, Self adaptivity in Grid computing, Concurrency
Computation Practice and Experience 17 (2005), 235-257.

[31] S. S. Vadhiyar and J. J. Dongarra, SRS: A framework for developing malleable and
migratable parallel applications for distributed systems, Parallel Processing Letters 13
(2003), 291-312.

[32] L. Wang, K. Pattabiraman, Z. Kalbarczyk, R. K. Iyer, L. Votta, C. Vick, and A. Wood,
Modeling coordinated checkpointing for large-scale supercomputers, in: Proceedings of the
International Conference on Dependable Systems and Networks, Institute of Electrical and
Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2005,
pp. 812-821.

[33] N. Woo, H. Jung, H. Y. Yeom, T. Park, and H. Park, MPICH-GF: Transparent
checkpointing and rollback-recovery for grid-enabled MPI processes, IEICE Transactions
on Information and Systems E87-D (2004), 1820-1828.

[34] G. Wrzesinska, R. V. Van Nieuwpoort, J. Maassen, and H. E. Bal, Fault-tolerance,
malleability and migration for divide-and-conquer applications on the grid, in: Proceedings
- 19th IEEE International Parallel and Distributed Processing Symposium, Institute of

http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf

17

Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331,
United States, 2005, pp. 13a-13a.

[35] X. Zhang, D. Zagorodnov, M. Hiltunen, K. Marzullo, and R. D. Schlichting, Fault-tolerant
Grid services using primary-backup: Feasibility and performance, in: Proceedings - IEEE
International Conference on Cluster Computing, ICCC, Institute of Electrical and
Electronics Engineers Inc., New York, NY 10016-5997, United States, 2004, pp. 105-114.

[36] M. Zulkernine and R. E. Seviora, A compositional approach to monitoring distributed
systems, in: Proceedings of the 2002 International Conference on Dependable Systems and
Networks, IEEE Computer Society, 2002, pp. 763-772.

Multiagent and Grid Systems, vol. 2, no. 2, 2006, pp. 115 - 133.
The original publication is available at www.iospress.nl

18

Youcef Derbal, B. Eng., M.Sc., Ph.D. (Electrical and Computer Engineering, Queen’s
University). In his dissertation, Dr. Derbal investigated the stability of nonlinear dynamic systems
and the design of neuro-adaptive control structures. For over a decade, Dr. Derbal worked in
various information and computing industries. His research interests are focused on the various
decision-making mechanisms underlying grid systems, as well as the application of grid computing
solutions to the simulation of large scale models of environmental and biological systems.

19

Neighboring Node

Non-Neighboring Nodes

(located two hops away)

Distant Nodes

 (located more than two
hops away)

Reliable Suspect Reliable Suspect

Reliable Θ0 Θ1

R
eq

ui
re

d
Se

rv
ic

e

Suspect Θ2 Θ3

Θ4 Θ5

Θ6

Table 1: Partitioning of a scheduling solution set based on the available reliability information.

Multiagent and Grid Systems, vol. 2, no. 2, 2006, pp. 115 - 133.
The original publication is available at www.iospress.nl

20

Fig. 1: Overview of a Fault-Tolerant Grid Management Framework.

Fig. 2: Service Fault Tree.

Fig. 3: The dynamic behavior of running service instances are coupled because of their
dependence on the shared resources of the hosting environment.

Fig. 4: Stochastic model of service operation.

Fig. 5: Dissemination of reliability information.

Fig. 6: Bound on the storage size of the registry as a function of the number of hosted services
illustrated for a maximum number of neighbors set to 25, 50, 75 and 100.

Fig. 7: Integration of the fault-tolerance framework within the grid node management system.

Fig. 8: Midland Grid Emulator.

Fig. 9: Emulation of service operation.

Fig. 10: Failure Ratio as a function of grid size for balanced fault injection.

Fig. 11: Ratio of service denial as a function of grid size for balanced fault injection.

Fig. 12: Failure ratio as a function of grid size for unbalanced fault injection.

Fig. 13: Service denial ratio as a function of grid size for unbalanced fault injection.

Fig. 14: Ratios of service denials and failures as a function of the maintenance threshold for
balanced fault injection.

Fig. 15: Ratios of service denial and failures as a function of maintenance threshold for an
unbalanced fault injection.

Fig. 1

21

Multiagent and Grid Systems, vol. 2, no. 2, 2006, pp. 115 - 133.
The original publication is available at www.iospress.nl

22

Processor
Fault

Hardware

Memory
Fault

Disk Storage
Fault

Memory
Leak

OS
Fault

Unhandled
exception

Unexpected
Input

Network

Resource
Depletion

Logic
Bombs Timeouts

Packet
Loss

Packet
Corruption

Network
Devises Faults

Bandwidth
Unavailability

Software

Service Fault

Fig. 2

Fig. 3

23

Multiagent and Grid Systems, vol. 2, no. 2, 2006, pp. 115 - 133.
The original publication is available at www.iospress.nl

24

Robust
Failure

VunerableMaintenance

Fig. 4

(,)s nΦ

()
0
xϒ

()
0
hϒ

Fig. 5

25

Multiagent and Grid Systems, vol. 2, no. 2, 2006, pp. 115 - 133.
The original publication is available at www.iospress.nl

26

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

Maximum Number of Hosted Services per Node

Re
gi

st
ry

 S
to

ra
ge

 S
iz

e
(M

eg
ab

yt
es

)

Nmax=75

Nmax=25

Nmax=50

Nmax=100

Fig. 6

Decentralized Grid
Decision-Making

Mechanisms

Models of Service
& Node Reliability

Local Fault Monitoring
Detection and Prediction

Local Proactive Fault
Prevention Strategies

Local Reactive Fault
Recovery Strategies

Reliability
Information

Dissemination
Strategy

Reliability
Information

Registry

Resource & Service
Information Registry

Local Resource & Job State
Monitoring

To Neighboring
Nodes

From Neighboring Nodes

From Neighboring Nodes

Resources &
Services

Job
Processes

Fig. 7

27

Multiagent and Grid Systems, vol. 2, no. 2, 2006, pp. 115 - 133.
The original publication is available at www.iospress.nl

28

Fig. 8

0

Compromising events with a
Poisson inter-arrival time.

Constant rate across nodes and
services for balanced fault

injection, and random rates for
unbalanced fault injection.

Failure

Robust

Vulnerable

25

100

Proactive
Maintenance

Maintenance
Threshold

Recovery

Fig. 9

100 200 300 400 500 600 700
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

CG Size

A
ve

ra
ge

 F
ai

lu
re

 R
at

io

RDS

FTRDS

Fig. 10

29

Multiagent and Grid Systems, vol. 2, no. 2, 2006, pp. 115 - 133.
The original publication is available at www.iospress.nl

30

100 200 300 400 500 600 700
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

CG Size

A
ve

ra
ge

 S
er

vi
ce

 D
en

ia
l R

at
io

Fig. 11

100 200 300 400 500 600 700
0.04

0.06

0.08

0.1

0.12

0.14

0.16

CG Size

A
ve

ra
ge

 F
ai

lu
re

 R
at

io

RDS

FTRDS

Fig. 12

100 200 300 400 500 600 700
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

CG Size

A
ve

ra
ge

 S
er

vi
ce

 D
en

ia
l R

at
io

Fig. 13

31

Multiagent and Grid Systems, vol. 2, no. 2, 2006, pp. 115 - 133.
The original publication is available at www.iospress.nl

32

20 30 40 50 60 70 80 90
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Maintenance Threshold (%)

A
ve

ra
ge

 R
at

io

Fig. 14

20 30 40 50 60 70 80 90
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Maintenance Threshold (%)

A
ve

ra
ge

 R
at

io

Fig. 15

33

