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Abstract: Computational grids (CGs) are large scale networks of geographically distributed aggregates of 

resource clusters that may be contributed by distinct organizations for the provision of computing services 

such as model simulation, compute cycle and data mining. Traditionally, the decision-making strategies 

underlying the grid management mechanisms rely on the physical view of the grid resource model. This 

entails the need for complex multi-dimensional search strategies and a considerable level of resource state 

information exchange between the grid management domains.  In this paper we argue that with the adoption 

of service oriented grid architectures, a logical service-oriented view of the resource model provides a more 

appropriate level of abstraction to express the grid capacity to handle incoming service requests. In this 

respect, we propose a quantification model of the aggregated service capacity of the hosting environment that 

is updated based on the monitored state of the various environmental resources required by the hosted 

services.  A comparative experimental validation of the model shows its performance towards enabling an 

adequate exploitation of provisioned services.  
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1   Introduction 

Computational Grids (CGs) are large scale 

networks of geographically distributed aggregates 

of resource clusters often contributed by distinct 

organizations for the provision of computing 

services such as scientific simulations, data mining 

and parameter sweep applications. The providers 

may enter into agreement to share the exploitation 

of these resources or organize them along an 

economy model to provide commercially viable 

business services. For this paradigm, the resource 

model underlying the various decision-making 

strategies is pivotal to the overall effectiveness of 

the grid resource exploitation [1]. Traditionally, the 

grid resource model is constructed as a dictionary 

of uniquely identified computing hosts with 

attributes such as CPU slots, RAM and Disk space, 

etc. Hence, it captures what may be labeled as the 

physical view of grid resources.  Architectural 

variants of this physical view of grid resources have 

been utilized in the grid management strategies; 

including resource state dissemination [2-5]; 

scheduling [6-8]; and resource discovery [9-14]. 

The reliance of the grid management mechanisms 

on a large dictionary of resource attribute-value 

pairs entails the need for complex multi-

dimensional search strategies and a considerable 

level of resource state information exchange 

between the distinct grid administrative domains. In 

addition, the queering of a large resource attribute-

based model and the dissemination of its state 

across distinct administrative domains induces a 

higher processing and communication latency as 

well as an increase of network congestion. 

Furthermore, with the expanding application realm 

of grid computing to various scientific and business 

domains, it is becoming clear that grid resources are 

not limited to clusters of desktop machines, 

workstations and supercomputers but rather consist 

of any set of resources that enable the provision of 

computing services. These include specialized 

instruments such telescopes or digital signal 

processors, raw data from sensors, large repository 

of datasets both processed and raw, application 

services, and rich user interfaces to enable 

visualization and analysis [15]. The diversity and 

heterogeneity of grid resources provides a strong 

motivation for the use of the service abstraction to 

synthesize and integrate the management 
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mechanisms in the open service-oriented grid 

architecture.  Given this context, the paper 

addresses the development of a model of the 

aggregate service capacity that quantifies the 

potential of a hosting environment to handle 

incoming service requests. The model is updated 

using the monitored state of the various resources 

required by the hosted services. The considered 

resources are not limited to computing devices and 

datasets but also include other infrastructure 

components such as application and database 

servers. For the later resources, issues such as the 

maximum number of open database connections, 

the maximum number of spawn threads, and the 

number of instances of a Virtual Machine that can 

be spawned by an application server are concrete 

indicators of the ability of the grid environment to 

handle requests directed to its hosted services. In 

this respect, the traditional notion of CPU slot may 

not constitute and adequate measure of a hosting 

environment’ capacity to handle incoming service 

requests. Hence, we introduce, in conjunction with 

the service-oriented resource model, a unit of such 

aggregate service capacity that we call servslot. A 

servslot quantifies the level of resource needs 

necessary to handle a single service request. The 

share of resources attached to a servslot is 

adaptively computed based on the current service 

request load and its associated resource 

consumption. The introduced notion of service 

capacity results in two immediate benefits. First, a 

more effective resource exploitation is achieved 

because the dynamic quantification of a servslot 

enables the adaptation to varying resource needs 

across distinct service categories and across 

requests within the same service category. Second, 

simplifications of the management mechanisms 

such as scheduling are expected since the use of 

service-oriented quantification of hosting capacity 

is coherent with the view of the grid as a supply-

demand system with service-centric exploitation 

processes [16,17]. 

The rest of the paper is organized as follows: 

Section 2 provides an overview of the grid 

architecture under consideration. The proposed 

model of service capacity is detailed in Section 3.  

Sections 4 and 5 describe the approaches used for 

the grid–wide integration of the resource model as 

well as its management at the cluster level. The 

Experimental validation of the model is detailed in 

Section 6 and the paper is concluded in Section 7 

along with a discussion about future works.  

2   Grid Architecture 

The framework under consideration views the grid 

as a dynamic federation of resource clusters 

managed by distinct organizations for the provision 

of computing services. Each cluster constitutes a 

distinct management domain which includes a set 

of agents that manage the provision of the hosted 

services (see Fig. 1). One agent, called the 

Principal, is designated to coordinate inter-cluster 

operations such as resource state dissemination, and 

delegation of service requests’ handling to peer 

clusters. The resulting grid has the properties of a 

power law network such as robustness against 

random failures of the agents [18,19]. The inter-

cluster communication is mediated by the 

Principals, as a result overlay networks spanning 

multiple clusters is avoided, and the problem of 

excessive traffic illustrated for the case of Gnutella 

networks may be prevented [20].  
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Fig. 1. The grid as a dynamic federation of resource clusters 

 

The Grid nodes are assumed to have the ability to 

delegate the handling of service requests to other 

clusters in function of some inter-cluster Service 

Level Agreements (SLAs) [21]. In addition to the 

assumed federation-based organization of the grid, 

the considered architectural framework utilizes the 

notion of neighborhood and neighbors. In this 

respect, two nodes are said to be neighbors if they 
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maintain a regular communication link for the 

exchange of information such as resource state. The 

set of neighbors to a given node defines its 

neighborhood.  Node membership in the grid is 

assumed to be dynamic. It is established through the 

exchange of identity information among 

neighboring nodes, which should ideally be 

geographically proximate. The identity information 

includes the node IP address, assigned 

communication port numbers, as well as any other 

credential or configuration parameters necessary 

for the establishment of communication links. The 

clusters that make up the gird may join or leave the 

federation at any time, with an effect limited to the 

configuration of neighboring clusters. However, 

since service request handling may be delegated 

beyond a neighborhood, extra management 

mechanisms are needed to minimize loss of work 

that may already be in progress within a departing 

cluster.   In case where inter-cluster agreements are 

dynamically negotiated or established out of bound, 

it is assumed that they would include elements 

which deal with changes to a cluster membership in 

the grid and the mentioned issue of loss of work.   

3 Model of Service Capacity 

Consider a User Service Request (USR) submitted 

to a grid cluster. Let us assume that such request 

requires for its handing the availability of a single 

grid service. Such availability would necessarily go 

beyond the assertion that the required grid service 

is indeed deployed. In particular, the service hosting 

environment has to possess sufficient resource 

availability for the instantiation of the grid service 

in question, the subsequent invocation of its 

operations, and the maintenance of its state. The 

required resources may include CPU slots, RAM, 

other service components, disk space, swap space, 

memory cache as well as any required licenses of 

application software that the service instance may 

need for its successful operation. Let 

 0 1 1, ,..., nR r r r   be the set of cluster resources 

required for the provision of a set 

 0 1 1, ,..., mS s s s   of deployed services. The 

competing resource needs of these services may be 

illustrated in Fig. 2 indicating their inevitable 

coupling. While it may be possible to allocate, on a 

service by service basis, the needed levels of 

resources, the overall resource exploitation would 

be less than effective. For example, let us assume 

that the services in S  are exposed using Web 

Services deployed on an application server and rely 

for their operation on the access to a database 

server. In addition to the nominal resource needs of 

the database and application servers such as RAM 

and disk, the handling of inbound service requests 

will have their own extra resource needs. These are 

expected to fluctuate from one request to the next 

depending on the nature of the business function 

realized by the service in question. 
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Fig. 2. Deployed services rely on common resources 

Furthermore, the level of resource usage varies 

during the lifecycle of a single service request 

handling. Consequently, there is a need for a model 

of service capacity that captures the time-varying 

aggregate behavior of the resources within the 

hosting environment. In practice, it is plausible to 

assume that the deployed grid services belong to m

distinct categories, each essentially reliant on a 

common set of resources such that
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is its maximum level of availability, and is the set 
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of natural numbers. The weighting factor 0ik 

defines the relative importance of the various 

resources in shaping the aggregate service capacity 

of the hosting environment. Resources that are more 

critical to the operation of the service category will 

have a higher weight in the definition of the service 

capacity. While the above model of service capacity 

reflects the availability levels of the physical 

resource, there are other considerations that would 

require its refinement. In particular, let us consider 

the interaction between the decision-making 

mechanisms (such as task scheduling) and the 

estimation of the resource availability. This closed 

loop interaction is embodied by the time-varying 

dynamic feedback system of Fig. 3, where sf  and 

of are the scheduling and monitoring frequencies 

respectively. In compliance with Shannon’s 

Sampling Theorem [22], of would have to be at least 

twice the scheduling frequency sf  in order to 

achieve an accurate observation of the dynamics of 

resource availability resulting from the allocations 

of the scheduling decisions. 
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Fig. 3. Grid decision-making processes operate in the context  
of a closed loop feedback system. 

 

 

In keeping with the practice in digital control 

systems, we may choose the above frequencies such 

that 2.5o sf f . The validity of this choice relies on 

the assumption that the changes in resource 

availability are the direct result of the scheduling 

decisions, which is always true at the cluster level 

of a grid system. Even with the satisfaction of the 

above condition, with an added margin to account 

for network delays, the simplicity of the capacity 

model given by (1) has an undesirable drawback. 

Indeed, the model may some times indicate a non-

zero capacity even when the hosting environment is 

not able to instantiate the service or simply fail to 

do it within an expected delay period as specified 

by some required QoS (Quality of Service). 

Assuming the compliance with the Sampling 

Theorem, this anomaly can be corrected through a 

refinement that takes into consideration an estimate 

of the maximum service load that a hosting 

environment may handle for a given service 

category.  In this respect, let (max)

kI  be the estimated 

maximum number of service requests that can ever 

be handled concurrently for a benchmark service of 

the category. The capacity model given in (1) is 

then refined as follows: 
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number of concurrently handled service requests of 

category k . The factor ( )k t , that we call the 

instantaneous service utilization factor, ensures that 

as more service instances are concurrently running, 

the resulting resource utilization is directly and 

proportionally translated into a diminished 

availability of residual service capacity. Since all 

service categories rely in part on a common subset 

of physical resources such as CPU and RAM, the 

above version of the capacity model has to be 

normalized so as to ensure that the utilization of 

common resources by any one of the service 

categories is reflected on the residual service 

capacity for all service categories. Hence, we 

further constrain the model as follows: 
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k is an inter-category normalization factor, and 
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k  can be set to 
1

m
for all categories implementing 

therefore a fair share policy of common resources.  

Other policies of sharing can also be implemented 

based on known demand patterns of hosted service 

categories. For example, the service categories with 
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higher demands would have higher values of
k

compared to those associated with patterns of lower 

demand levels. For ease of implementation ( )kC t  is 

scaled up with a factor of 100 and rounded to the 

closest integer. We can then interpret the introduced 

capacity measure as the percentage or share of the 

total environment’s service capacity that would be 

available under zero load (when no service requests 

is being handled). Consequently, a servslot is 

defined as the portion of ( )kC t  necessary for the 

handling of a single service request, and is set 

initially to
(max)

( )k

k

C t

I
. However, this value is 

dynamically updated thereafter using the actual 

load (instantaneous number of concurrently 

handled service requests) instead of (max)

kI .  

In order to support the grid wide resource 

management mechanisms such as scheduling and 

service discovery, the service capacity is 

maintained in a cluster-bound registry whose 

content is selectively disseminated to peer clusters. 

The resulting network of service registries make up 

a non-disjoint distributed repository updated 

through regular exchange of service capacity 

information among neighbors (see Fig. 4). It has 

been shown that such non-uniform, selective 

dissemination strategy of resource state information 

is scalable [23]. In addition, given the low data 

density being exchanged, both the network 

bandwidth usage and the registries’ storage 

requirements are expected to be relatively low.  
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Fig. 4  A distributed repository of service capacity 

 

The proposed capacity model is concerned with the 

quantification of a node capacity to handle 

incoming service requests.  However, the model 

may also accommodate composed services that 

span multiple clusters or nodes. In this respect, the 

capacity published by the node that hosts the service 

endpoint of a composed service may be expressed 

as follows: 
( )

0,.., 1
( ) min ( )

s

j

k k
j n

C t C t
 

    (4) 

Where Sn is the number of component services, and 

( ) ( ), 0,...,j

k SC t j n  are their respective capacities. 

The distributed network of service registries 

provides the capacity information associated with 

the component services and enable hence the 

implementation of the above model. The considered 

architectural framework assumes the composed 

services to be reliant on component services hosted 

by neighboring clusters. However, such constraint 

may be removed by adding a discovery process to 

query the capacities of component services hosted 

by non-neighboring clusters.     

4   Dynamic Estimation of Service Capacity 

Since the capacity unit (servslot) is tied to a service 

or a class of services as assessed by the provider 

cluster, an auxiliary mechanism is necessary to 

enable peer clusters to interpret the disseminated 

capacity information with respect to the needs of 

their service requests. In this respect, let the residual 

(unused) capacity per running service instance be 

defined at time t as follows: 

( )
( )

( )

k
k

k

C t
t

N t
     (5) 

Where ( )kN t is the number of running service 

instances of category k at time t, ( )kC t is the total 

available capacity as disseminated by the provider. 

A small value of k indicates a low relative margin 

of available capacity. Such margin is needed to 

address the variable resource needs during the 

lifecycles of requests’ handling.  The provider may 

assert that a new service request may not be handled 

successfully unless k  is greater than a threshold 

value 0k  . k may be estimated through 

monitoring of the trends of resource consumption 

by the hosted services. Provided that ,k kC  , and 
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( )kN t are disseminated, potential service 

consumers may estimate the ability of the provider 

to handle their requests prior to any request 

handling delegation. In particular, the future 

residual capacity per service request may be defined 

for a supplementary load of m  service request as 

follows: 

( ) ( )
( )

( )

m k
k

k

C t
t

N t m
 


   (6) 

A satisfaction of the relationship ( )m

k k    would 

indicate a high likelihood that the hosting 

environment will have a sufficient capacity to 

concurrently handle m  extra service requests in 

addition to its current load. This estimation scheme 

has an inherent advantage in that it doesn’t require 

an expensive and non-scalable resource-attribute-

based search of a potentially large resource 

directory such as the Globus MDS2 [24]. The 

selective non-uniform dissemination of available 

service capacity among neighboring peers improves 

the scalability of those decision making 

mechanisms that rely on the capacity information 

such as scheduling, and service discovery. 

However, the uncertainty on the capacity 

information and the frequency of dissemination 

would necessarily affect the performance of the 

resource exploitation strategies. In other works, the 

uncertainty on the resource state has been addressed 

through a supplementary confidence model [25]. 

The model provides a potential consumer with a 

measure of confidence in the ability of the service 

provider to handle future service requests. The 

integration of the proposed model of service 

capacity, the dissemination strategy and the 

handling of the associated uncertainty is an 

important issue that requires further treatments in 

future works. 

5   Service Management 

The implementation of the proposed model requires 

a service provision framework that incorporates the 

monitoring and management of resource 

availability. As deployed grid services claim and 

use the shared resources of their home cluster, their 

available capacity has to be updated accordingly. In 

other words, the actual availability of the physical 

resources (CPU, RAM, Swap, Disk space, database 

connections, threads, etc.) has to be regularly 

monitored to provide a timely state feedback to the 

model of service capacity. Furthermore, given the 

presumably random distribution of the capacity 

needs of the service requests, k  needs to be 

updated at regular time intervals so as to accurately 

reflect the critical point at which the hosting 

environment would become unable to accept 

additional load for a specific service. For this 

reported work, a moving average over a discrete 

window of time M  is used to estimate k , that is: 

( )1

1 ( )

n
k

k

i n M k

C n

M N n 

 

  (7) 

The use of the above model provides an averaged 

historical profile of capacity consumption per 

service request. Hence, it is deemed adequate to 

estimate k  which is essentially the minimum 

capacity necessary for a future service request to be 

successfully handled.   

The proposed model of service capacity has been 

integrated with Midland, a grid middleware 

developed by the author (See Fig. 5). A cluster 

bound relational database is used to implement the 

service registry which stores the service capacity 

information. The resource state information is 

relayed by the host resource managers to the 

Service Capacity Manager, which is responsible for 

the maintenance of the capacity information as well 

as its dissemination to neighboring peers.  

 

 
Fig. 5. Overview of Midland architecture 
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6   Related Works 

 To the best of our knowledge, the proposed 

approach of service capacity modeling has not been 

explored with the exception of one related research 

work reported in [17].  In this work two metrics 

called server share and service share are introduced 

to quantify the capacity of a server environment to 

handle service requests. The server share is defined 

for a given class of services as the maximum load 

the server environment is able to sustain.  The 

service share is the percentage of the server share 

required by a given service.  The maximum server 

load is established in relation to a benchmark 

application for the class of services under 

consideration. This approach of service capacity 

quantification has been applied to services provided 

by a data centre managed within the framework of 

a single administrative domain of a utility grid. The 

capacity quantification model developed in [17] 

provides a significant contribution towards the 

development of a service oriented exploitation of 

grid resources. However, the reliance on a 

benchmark application for the definition of the 

capacity unit may limit the extension of the 

approach to grids with distinct management 

domains unless a significant standardization effort 

is undertaken regarding benchmark service loads. 

Benchmark applications would have to be selected 

as part of a community standard and thereafter 

continuously updated to account for new classes of 

services. This may not be practically feasible given 

the strong linkage between resource usage profiles 

of deployed services and the nature and 

configuration of the software and hardware 

infrastructure of the hosting environment which 

may vary considerably from one provider to the 

next. This is in contrast to the proposed approach 

where potential service consumer nodes rely on a 

dynamic estimation of the servslot unit using the 

disseminated capacity information. As a result, any 

need for prior grid-wide normalization or 

benchmarking of service resource needs is avoided. 

This maintains the independence of the exploitation 

mechanisms applied within the distinct 

administrative domains of the grid, and enables the 

grid-wide implementation of the proposed model of 

service capacity.  

7   Experimental Results 

A grid test-bed is setup using three Midland 

managed clusters connected through a 100 mps 

local area network. Each cluster includes a 

collection of desktop machines (2.7 GHZ CPU and 

0.5 GB of RAM), and an IBM xSeries server which 

hosts the cluster’s principal. A set of sorting 

services based on the bubble, insertion and selection 

algorithms are deployed on the grid test-bed. The 

prototype implementation of the proposed capacity 

model considers a resource set that includes the 

CPU, RAM, virtual memory, running processes, 

and running threads. Although the ability of the 

system to spawn new threads and processes 

depends on the first three types of resources, the 

inclusion of the later elements enable a more 

efficient control of the resources’ usage by the 

deployed services.  For the reported experiments, 

the inter-arrival time of service requests follows a 

Poisson distribution with a randomly selected rate. 

The requested services are randomly chosen among 

the three deployed sorting services. The size of the 

data being sorted is generated using a Gaussian 

process so as to simulate a random distribution of 

the resource needs of the service requests. 

The objectives of the experimental work is 

threefold; namely: (1) to illustrate the ability of the 

model to provide an adequate quantification of the 

hosting environment’s capacity to handle inbound 

service requests; (2) to compare the proposed 

model, labeled as the Dynamic Service Capacity 

(DSC) model,  against the traditional approach of 

static slot capacity allocation referred to here as the 

Static Slot Capacity (SSC); and (3) to illustrate the 

validity of the proposed strategy of capacity 

estimation by potential service consumers.  

For the first set of experiments, Figs 6-9 show a 

direct correlation between the load and the residual 

capacity, whereby a load increase resulted in the 

decrease of the capacity and vise-versa. This 

correlation is asserted for a significant spread of the 

service request makespan distribution as illustrated 

in Fig. 10.  
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Fig. 6. Service load 

 
Fig. 7. Residual capacity as a percentage of the zero load 

capacity.   

 
Fig. 8. Resource load as a percentage of the zero load levels 

 
Fig. 9. Process and Thread loads as a percentage of the 

maximum allowed numbers of processes and threads. 

 
Fig. 10. Service request makespan distribution 

 

This observed load-capacity correlation in addition 

to the absence of any pattern of resource starvation 

may suggest that the model reflects the real capacity 

of the hosting environment (see Figs 8-9).  In order 

to further assert the validity of the above argument, 

the following conjecture is formulated: if the 

proposed model is adequate in its representation of 

the environment’s service capacity, then it would be 

possible for a scheduler in closed loop with the 

proposed model to achieve a steady state 

exploitation dynamics where the load is maintained 

at its maximum level with a low residual service 

capacity to spare. Another experiment that was run 

to test this conjecture show that (Figs 11-13): (1) 

indeed the resource exploitation converged, in a 

stable fashion, to a steady state; (2) the steady state 

corresponds to a maximum exploitation where the 
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number of concurrently handled service requests 

was maintained with little or no residual capacity to 

spare.  It needs to be noted that while the service 

capacity available at zero load is normalized to 100, 

it does not mean that the number of service requests 

that can be handled concurrently is 100. This is 

because the servslot, as defined in section 3, is equal 

to the average share of the total initial capacity that 

is consumed per running service instance. As a 

result its value changes in time in response to the 

nature of the load. For example, a load of 10 

requests and an observed zero residual capacity at a 

given time instant means that, for that specific 

instant a servslot is worth 10% of the zero load 

capacity. 

 
Fig. 11. Service load 

 
Fig. 12. Residual Service Capacity 

 

 
Fig. 13. Service request makespan distribution 

In a second set of experiments a comparison is 

conducted against the SSC model because of its 

equally advantageous simplicity. The size of the 

sorted data is chosen to be Gaussian distributed to 

create a realistic distribution of the capacity needs 

of the service requests. Figures 14 and 15 illustrate 

the performance of the SSC and DSC models for a 

standard deviation 30   and different maximum 

slot limits maxa  for the SSC model. The observed 

fluctuating low residual capacity for the SSC model 

increases the likelihood of sudden resource 

depletion and potential runtime fault occurrences. 

For some experimental runs, the virtual memory 

was so depleted that the Windows Services used to 

collect the resource and task states crashed. 

 
Fig. 14.  Service load for 30   and maxa =40, 80 
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Fig. 15. Residual capacity for σ =30 and 

max
a =40, 80  

In contrast, the DSC model exhibited a stable 

performance that was expected given the resource 

state feedback. More experimental runs were 

conducted for a wider distribution of the capacity 

needs of the submitted service requests. The 

dynamics of resource consumption shown in Figs 

16-19 is visibly more oscillatory for the SSC model 

and did cause a critical depletion of resources and a 

consequent crash of the monitoring infrastructure 

which had to be restarted (Figs 18-19).   

 
Fig. 16. Service load σ =60 and 

max
a =40 

 

Fig. 17.  Residual capacity for σ =60 and 
max

a = 40 

 
Fig. 18.  Service load forσ =60 and 

max
a = 80 

 
Fig. 19. Residual capacity for σ =60 and 

max
a = 80 

The last set of experiments involved three clusters 

configured as immediate neighbors. Submitted 

requests at each cluster are automatically forwarded 
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to neighboring clusters without any optimized 

scheduling so as to analyze the dynamic estimation 

strategy given in section 4. Fig. 20 depicts the ratio 

of service denials D
D

T

n

n
   versus ( )m

k . 
Tn is the 

total number of requests submitted across all three 

clusters, and Dn  is the number of service requests 

that were denied handling because of insufficient 

availability of service capacity. The key result of 

Fig. 20 is the observed inverse proportionality 

between D  and ( )m

k  which suggests that the use of 

( )m

k is an adequate predictor of the available 

capacity of peer clusters. However, given the 

latencies associated with the dissemination of 

capacity information between clusters, it may 

appropriate to consider in future works the use of 

past values of ( )m

k  as part of a more generalized 

prediction model.  

 
Fig. 20.  Ratio of service denials as a function of 

( )m

k  

7   Conclusion and Future Works 

The paper put forth the foundations for a model of 

grid service capacity to overcome some of the 

complexities and challenges associated with the use 

of traditional attribute-value based resource models. 

The new approach includes the quantification of the 

aggregated service capacity of a hosting 

environment using a dynamic measure called 

servslot.  The experimental results show the extent 

to which the proposed model provides an adequate 

measure of capacity to support the grid 

management mechanisms such as scheduling. 

Compared to the traditional model of static slot 

capacity, the proposed model is shown to enable 

more robust resource exploitation in the face of 

varying resource state. However, there remain 

numerous issues that may be addressed in future 

works. In particular, the use of a non-linear model 

of service capacity using Neural Network, trained 

through profiling of resource consumption, may 

offer a generalized solution to the modeling of grid 

service capacity.  Second, the estimation of the 

ability of peer clusters to handle forwarded services 

requests may benefit from a strategy based on a 

time-series model of residual capacity. Finally, 

more investigations are needed to study the effect 

of latency on the leverage of the disseminated 

capacity information provided by the proposed 

model.  
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