
Page 1 Journal of Computer Science and Technology. 22(04) : 505-514, 2007.

The original publication is available at www.springerlink.com

A Model of Grid Service Capacity

Youcef Derbal

School of Information Technology Management

Ryerson University

350 Victoria Street, Toronto, ON, M5B 2K3, Canada
E-mail: yderbal@ryerson.ca

Abstract: Computational grids (CGs) are large scale networks of geographically distributed aggregates of

resource clusters that may be contributed by distinct organizations for the provision of computing services

such as model simulation, compute cycle and data mining. Traditionally, the decision-making strategies

underlying the grid management mechanisms rely on the physical view of the grid resource model. This

entails the need for complex multi-dimensional search strategies and a considerable level of resource state

information exchange between the grid management domains. In this paper we argue that with the adoption

of service oriented grid architectures, a logical service-oriented view of the resource model provides a more

appropriate level of abstraction to express the grid capacity to handle incoming service requests. In this

respect, we propose a quantification model of the aggregated service capacity of the hosting environment that

is updated based on the monitored state of the various environmental resources required by the hosted

services. A comparative experimental validation of the model shows its performance towards enabling an

adequate exploitation of provisioned services.

Keywords: Computational Grids, Service Provision, Resource Model, Service Capacity.

1 Introduction

Computational Grids (CGs) are large scale

networks of geographically distributed aggregates

of resource clusters often contributed by distinct

organizations for the provision of computing

services such as scientific simulations, data mining

and parameter sweep applications. The providers

may enter into agreement to share the exploitation

of these resources or organize them along an

economy model to provide commercially viable

business services. For this paradigm, the resource

model underlying the various decision-making

strategies is pivotal to the overall effectiveness of

the grid resource exploitation [1]. Traditionally, the

grid resource model is constructed as a dictionary

of uniquely identified computing hosts with

attributes such as CPU slots, RAM and Disk space,

etc. Hence, it captures what may be labeled as the

physical view of grid resources. Architectural

variants of this physical view of grid resources have

been utilized in the grid management strategies;

including resource state dissemination [2-5];

scheduling [6-8]; and resource discovery [9-14].

The reliance of the grid management mechanisms

on a large dictionary of resource attribute-value

pairs entails the need for complex multi-

dimensional search strategies and a considerable

level of resource state information exchange

between the distinct grid administrative domains. In

addition, the queering of a large resource attribute-

based model and the dissemination of its state

across distinct administrative domains induces a

higher processing and communication latency as

well as an increase of network congestion.

Furthermore, with the expanding application realm

of grid computing to various scientific and business

domains, it is becoming clear that grid resources are

not limited to clusters of desktop machines,

workstations and supercomputers but rather consist

of any set of resources that enable the provision of

computing services. These include specialized

instruments such telescopes or digital signal

processors, raw data from sensors, large repository

of datasets both processed and raw, application

services, and rich user interfaces to enable

visualization and analysis [15]. The diversity and

heterogeneity of grid resources provides a strong

motivation for the use of the service abstraction to

synthesize and integrate the management

mailto:yderbal@ryerson.ca

Page 2 Journal of Computer Science and Technology. 22(04) : 505-514, 2007.

The original publication is available at www.springerlink.com

mechanisms in the open service-oriented grid

architecture. Given this context, the paper

addresses the development of a model of the

aggregate service capacity that quantifies the

potential of a hosting environment to handle

incoming service requests. The model is updated

using the monitored state of the various resources

required by the hosted services. The considered

resources are not limited to computing devices and

datasets but also include other infrastructure

components such as application and database

servers. For the later resources, issues such as the

maximum number of open database connections,

the maximum number of spawn threads, and the

number of instances of a Virtual Machine that can

be spawned by an application server are concrete

indicators of the ability of the grid environment to

handle requests directed to its hosted services. In

this respect, the traditional notion of CPU slot may

not constitute and adequate measure of a hosting

environment’ capacity to handle incoming service

requests. Hence, we introduce, in conjunction with

the service-oriented resource model, a unit of such

aggregate service capacity that we call servslot. A

servslot quantifies the level of resource needs

necessary to handle a single service request. The

share of resources attached to a servslot is

adaptively computed based on the current service

request load and its associated resource

consumption. The introduced notion of service

capacity results in two immediate benefits. First, a

more effective resource exploitation is achieved

because the dynamic quantification of a servslot

enables the adaptation to varying resource needs

across distinct service categories and across

requests within the same service category. Second,

simplifications of the management mechanisms

such as scheduling are expected since the use of

service-oriented quantification of hosting capacity

is coherent with the view of the grid as a supply-

demand system with service-centric exploitation

processes [16,17].

The rest of the paper is organized as follows:

Section 2 provides an overview of the grid

architecture under consideration. The proposed

model of service capacity is detailed in Section 3.

Sections 4 and 5 describe the approaches used for

the grid–wide integration of the resource model as

well as its management at the cluster level. The

Experimental validation of the model is detailed in

Section 6 and the paper is concluded in Section 7

along with a discussion about future works.

2 Grid Architecture

The framework under consideration views the grid

as a dynamic federation of resource clusters

managed by distinct organizations for the provision

of computing services. Each cluster constitutes a

distinct management domain which includes a set

of agents that manage the provision of the hosted

services (see Fig. 1). One agent, called the

Principal, is designated to coordinate inter-cluster

operations such as resource state dissemination, and

delegation of service requests’ handling to peer

clusters. The resulting grid has the properties of a

power law network such as robustness against

random failures of the agents [18,19]. The inter-

cluster communication is mediated by the

Principals, as a result overlay networks spanning

multiple clusters is avoided, and the problem of

excessive traffic illustrated for the case of Gnutella

networks may be prevented [20].
Cluster

Agent

Agent

Agent

Principal

Cluster

Agent

Agent

Agent

Principal

Cluster

Agent

Agent

Agent

Principal

Cluster

Agent

Agent

Agent

Principal

Cluster

Agent

Agent

Agent

Principal

Fig. 1. The grid as a dynamic federation of resource clusters

The Grid nodes are assumed to have the ability to

delegate the handling of service requests to other

clusters in function of some inter-cluster Service

Level Agreements (SLAs) [21]. In addition to the

assumed federation-based organization of the grid,

the considered architectural framework utilizes the

notion of neighborhood and neighbors. In this

respect, two nodes are said to be neighbors if they

Page 3 Journal of Computer Science and Technology. 22(04) : 505-514, 2007.

The original publication is available at www.springerlink.com

maintain a regular communication link for the

exchange of information such as resource state. The

set of neighbors to a given node defines its

neighborhood. Node membership in the grid is

assumed to be dynamic. It is established through the

exchange of identity information among

neighboring nodes, which should ideally be

geographically proximate. The identity information

includes the node IP address, assigned

communication port numbers, as well as any other

credential or configuration parameters necessary

for the establishment of communication links. The

clusters that make up the gird may join or leave the

federation at any time, with an effect limited to the

configuration of neighboring clusters. However,

since service request handling may be delegated

beyond a neighborhood, extra management

mechanisms are needed to minimize loss of work

that may already be in progress within a departing

cluster. In case where inter-cluster agreements are

dynamically negotiated or established out of bound,

it is assumed that they would include elements

which deal with changes to a cluster membership in

the grid and the mentioned issue of loss of work.

3 Model of Service Capacity

Consider a User Service Request (USR) submitted

to a grid cluster. Let us assume that such request

requires for its handing the availability of a single

grid service. Such availability would necessarily go

beyond the assertion that the required grid service

is indeed deployed. In particular, the service hosting

environment has to possess sufficient resource

availability for the instantiation of the grid service

in question, the subsequent invocation of its

operations, and the maintenance of its state. The

required resources may include CPU slots, RAM,

other service components, disk space, swap space,

memory cache as well as any required licenses of

application software that the service instance may

need for its successful operation. Let

 0 1 1, ,..., nR r r r  be the set of cluster resources

required for the provision of a set

 0 1 1, ,..., mS s s s  of deployed services. The

competing resource needs of these services may be

illustrated in Fig. 2 indicating their inevitable

coupling. While it may be possible to allocate, on a

service by service basis, the needed levels of

resources, the overall resource exploitation would

be less than effective. For example, let us assume

that the services in S are exposed using Web

Services deployed on an application server and rely

for their operation on the access to a database

server. In addition to the nominal resource needs of

the database and application servers such as RAM

and disk, the handling of inbound service requests

will have their own extra resource needs. These are

expected to fluctuate from one request to the next

depending on the nature of the business function

realized by the service in question.

r0 rn-1
r1

s1s0 sm-1sm-2

Grid

Services

Grid

Resources

Fig. 2. Deployed services rely on common resources

Furthermore, the level of resource usage varies

during the lifecycle of a single service request

handling. Consequently, there is a need for a model

of service capacity that captures the time-varying

aggregate behavior of the resources within the

hosting environment. In practice, it is plausible to

assume that the deployed grid services belong to m

distinct categories, each essentially reliant on a

common set of resources such that
1

()

0

m
k

k

S S




 , and

1
()

0

m
k

k

S




 . Let the time-varying service capacity

of the hosting environment for the category k of

deployed services be defined as follows:
1

(max)
0

()
()

n
i

k ik

i i

l t
C t

l






 (1)

Where
1

0

1
n

ik

i






 , () 0il t  is the availability level of

resource ir R at the discrete time t . (max) 0il 

is its maximum level of availability, and is the set

Page 4 Journal of Computer Science and Technology. 22(04) : 505-514, 2007.

The original publication is available at www.springerlink.com

of natural numbers. The weighting factor 0ik 

defines the relative importance of the various

resources in shaping the aggregate service capacity

of the hosting environment. Resources that are more

critical to the operation of the service category will

have a higher weight in the definition of the service

capacity. While the above model of service capacity

reflects the availability levels of the physical

resource, there are other considerations that would

require its refinement. In particular, let us consider

the interaction between the decision-making

mechanisms (such as task scheduling) and the

estimation of the resource availability. This closed

loop interaction is embodied by the time-varying

dynamic feedback system of Fig. 3, where sf and

of are the scheduling and monitoring frequencies

respectively. In compliance with Shannon’s

Sampling Theorem [22], of would have to be at least

twice the scheduling frequency sf in order to

achieve an accurate observation of the dynamics of

resource availability resulting from the allocations

of the scheduling decisions.

User Service

Requests

Monitored Levels

of Resource

Attributes

Scheduler

Resource

Hosts

Service Capacity

Model

fs

fo

Scheduled

Tasks

Service

Capacity

Delay

Delay

Fig. 3. Grid decision-making processes operate in the context
of a closed loop feedback system.

In keeping with the practice in digital control

systems, we may choose the above frequencies such

that 2.5o sf f . The validity of this choice relies on

the assumption that the changes in resource

availability are the direct result of the scheduling

decisions, which is always true at the cluster level

of a grid system. Even with the satisfaction of the

above condition, with an added margin to account

for network delays, the simplicity of the capacity

model given by (1) has an undesirable drawback.

Indeed, the model may some times indicate a non-

zero capacity even when the hosting environment is

not able to instantiate the service or simply fail to

do it within an expected delay period as specified

by some required QoS (Quality of Service).

Assuming the compliance with the Sampling

Theorem, this anomaly can be corrected through a

refinement that takes into consideration an estimate

of the maximum service load that a hosting

environment may handle for a given service

category. In this respect, let (max)

kI be the estimated

maximum number of service requests that can ever

be handled concurrently for a benchmark service of

the category. The capacity model given in (1) is

then refined as follows:
1

(max)
0

()
() . ()

n
i

k ik k

i i

l t
C t t

l
 





 
  
 
 (2)

Where
1

(max)
0

()
() 1 , 1

n
k

k ik

ik

I t
t

I
 





   , and ()kI t is the

number of concurrently handled service requests of

category k . The factor ()k t , that we call the

instantaneous service utilization factor, ensures that

as more service instances are concurrently running,

the resulting resource utilization is directly and

proportionally translated into a diminished

availability of residual service capacity. Since all

service categories rely in part on a common subset

of physical resources such as CPU and RAM, the

above version of the capacity model has to be

normalized so as to ensure that the utilization of

common resources by any one of the service

categories is reflected on the residual service

capacity for all service categories. Hence, we

further constrain the model as follows:
1

0

() . () . ()
n

k k ik i k

i

C t t t   




 
  

 
 (3)

k is an inter-category normalization factor, and
1 1

(max) (max)
0 0

() ()
() , () 1 , 1, 1

n m
i k

i k ik k

i ki k

l t I t
t t

l I
   

 

 

      .

k can be set to
1

m
for all categories implementing

therefore a fair share policy of common resources.

Other policies of sharing can also be implemented

based on known demand patterns of hosted service

categories. For example, the service categories with

Page 5 Journal of Computer Science and Technology. 22(04) : 505-514, 2007.

The original publication is available at www.springerlink.com

higher demands would have higher values of
k

compared to those associated with patterns of lower

demand levels. For ease of implementation ()kC t is

scaled up with a factor of 100 and rounded to the

closest integer. We can then interpret the introduced

capacity measure as the percentage or share of the

total environment’s service capacity that would be

available under zero load (when no service requests

is being handled). Consequently, a servslot is

defined as the portion of ()kC t necessary for the

handling of a single service request, and is set

initially to
(max)

()k

k

C t

I
. However, this value is

dynamically updated thereafter using the actual

load (instantaneous number of concurrently

handled service requests) instead of (max)

kI .

In order to support the grid wide resource

management mechanisms such as scheduling and

service discovery, the service capacity is

maintained in a cluster-bound registry whose

content is selectively disseminated to peer clusters.

The resulting network of service registries make up

a non-disjoint distributed repository updated

through regular exchange of service capacity

information among neighbors (see Fig. 4). It has

been shown that such non-uniform, selective

dissemination strategy of resource state information

is scalable [23]. In addition, given the low data

density being exchanged, both the network

bandwidth usage and the registries’ storage

requirements are expected to be relatively low.

192.132.11.78 bubble 20

192.132.11.77 insertion 43

192.132.11.79 bubble 20

192.132.11.79 selection 15

192.132.11.78 selection 4

Provider Service Capacity

…. …. ..

Cluster :192.132.11.77

192.132.11.78 bubble 20

192.132.11.77 insertion 43

192.132.11.78 selection 4

Provider Service Capacity

…. …. ..

Cluster :192.132.11.78

192.132.11.81 bubble 20

192.132.11.79 bubble 20

192.132.11.79 selection 15

192.132.11.80 selection 4

Provider Service Capacity

…. …. ..

Cluster :192.132.11.80

192.132.11.81 bubble 20

192.132.11.77 insertion 43

192.132.11.79 bubble 20

192.132.11.79 selection 15

192.132.11.80 selection 4

Provider Service Capacity

…. …. ..

Cluster :192.132.11.79

192.132.11.81 bubble 20

192.132.11.80 selection 4

192.132.11.79 bubble 20

192.132.11.79 selection 15

Provider Service Capacity

…. …. ..

Cluster :192.132.11.81

Fig. 4 A distributed repository of service capacity

The proposed capacity model is concerned with the

quantification of a node capacity to handle

incoming service requests. However, the model

may also accommodate composed services that

span multiple clusters or nodes. In this respect, the

capacity published by the node that hosts the service

endpoint of a composed service may be expressed

as follows:
()

0,.., 1
() min ()

s

j

k k
j n

C t C t
 

 (4)

Where Sn is the number of component services, and

() (), 0,...,j

k SC t j n are their respective capacities.

The distributed network of service registries

provides the capacity information associated with

the component services and enable hence the

implementation of the above model. The considered

architectural framework assumes the composed

services to be reliant on component services hosted

by neighboring clusters. However, such constraint

may be removed by adding a discovery process to

query the capacities of component services hosted

by non-neighboring clusters.

4 Dynamic Estimation of Service Capacity

Since the capacity unit (servslot) is tied to a service

or a class of services as assessed by the provider

cluster, an auxiliary mechanism is necessary to

enable peer clusters to interpret the disseminated

capacity information with respect to the needs of

their service requests. In this respect, let the residual

(unused) capacity per running service instance be

defined at time t as follows:

()
()

()

k
k

k

C t
t

N t
  (5)

Where ()kN t is the number of running service

instances of category k at time t, ()kC t is the total

available capacity as disseminated by the provider.

A small value of k indicates a low relative margin

of available capacity. Such margin is needed to

address the variable resource needs during the

lifecycles of requests’ handling. The provider may

assert that a new service request may not be handled

successfully unless k is greater than a threshold

value 0k  . k may be estimated through

monitoring of the trends of resource consumption

by the hosted services. Provided that ,k kC  , and

Page 6 Journal of Computer Science and Technology. 22(04) : 505-514, 2007.

The original publication is available at www.springerlink.com

()kN t are disseminated, potential service

consumers may estimate the ability of the provider

to handle their requests prior to any request

handling delegation. In particular, the future

residual capacity per service request may be defined

for a supplementary load of m service request as

follows:

() ()
()

()

m k
k

k

C t
t

N t m
 


 (6)

A satisfaction of the relationship ()m

k k   would

indicate a high likelihood that the hosting

environment will have a sufficient capacity to

concurrently handle m extra service requests in

addition to its current load. This estimation scheme

has an inherent advantage in that it doesn’t require

an expensive and non-scalable resource-attribute-

based search of a potentially large resource

directory such as the Globus MDS2 [24]. The

selective non-uniform dissemination of available

service capacity among neighboring peers improves

the scalability of those decision making

mechanisms that rely on the capacity information

such as scheduling, and service discovery.

However, the uncertainty on the capacity

information and the frequency of dissemination

would necessarily affect the performance of the

resource exploitation strategies. In other works, the

uncertainty on the resource state has been addressed

through a supplementary confidence model [25].

The model provides a potential consumer with a

measure of confidence in the ability of the service

provider to handle future service requests. The

integration of the proposed model of service

capacity, the dissemination strategy and the

handling of the associated uncertainty is an

important issue that requires further treatments in

future works.

5 Service Management

The implementation of the proposed model requires

a service provision framework that incorporates the

monitoring and management of resource

availability. As deployed grid services claim and

use the shared resources of their home cluster, their

available capacity has to be updated accordingly. In

other words, the actual availability of the physical

resources (CPU, RAM, Swap, Disk space, database

connections, threads, etc.) has to be regularly

monitored to provide a timely state feedback to the

model of service capacity. Furthermore, given the

presumably random distribution of the capacity

needs of the service requests, k needs to be

updated at regular time intervals so as to accurately

reflect the critical point at which the hosting

environment would become unable to accept

additional load for a specific service. For this

reported work, a moving average over a discrete

window of time M is used to estimate k , that is:

()1

1 ()

n
k

k

i n M k

C n

M N n 

 

 (7)

The use of the above model provides an averaged

historical profile of capacity consumption per

service request. Hence, it is deemed adequate to

estimate k which is essentially the minimum

capacity necessary for a future service request to be

successfully handled.

The proposed model of service capacity has been

integrated with Midland, a grid middleware

developed by the author (See Fig. 5). A cluster

bound relational database is used to implement the

service registry which stores the service capacity

information. The resource state information is

relayed by the host resource managers to the

Service Capacity Manager, which is responsible for

the maintenance of the capacity information as well

as its dissemination to neighboring peers.

Fig. 5. Overview of Midland architecture

Page 7 Journal of Computer Science and Technology. 22(04) : 505-514, 2007.

The original publication is available at www.springerlink.com

6 Related Works

 To the best of our knowledge, the proposed

approach of service capacity modeling has not been

explored with the exception of one related research

work reported in [17]. In this work two metrics

called server share and service share are introduced

to quantify the capacity of a server environment to

handle service requests. The server share is defined

for a given class of services as the maximum load

the server environment is able to sustain. The

service share is the percentage of the server share

required by a given service. The maximum server

load is established in relation to a benchmark

application for the class of services under

consideration. This approach of service capacity

quantification has been applied to services provided

by a data centre managed within the framework of

a single administrative domain of a utility grid. The

capacity quantification model developed in [17]

provides a significant contribution towards the

development of a service oriented exploitation of

grid resources. However, the reliance on a

benchmark application for the definition of the

capacity unit may limit the extension of the

approach to grids with distinct management

domains unless a significant standardization effort

is undertaken regarding benchmark service loads.

Benchmark applications would have to be selected

as part of a community standard and thereafter

continuously updated to account for new classes of

services. This may not be practically feasible given

the strong linkage between resource usage profiles

of deployed services and the nature and

configuration of the software and hardware

infrastructure of the hosting environment which

may vary considerably from one provider to the

next. This is in contrast to the proposed approach

where potential service consumer nodes rely on a

dynamic estimation of the servslot unit using the

disseminated capacity information. As a result, any

need for prior grid-wide normalization or

benchmarking of service resource needs is avoided.

This maintains the independence of the exploitation

mechanisms applied within the distinct

administrative domains of the grid, and enables the

grid-wide implementation of the proposed model of

service capacity.

7 Experimental Results

A grid test-bed is setup using three Midland

managed clusters connected through a 100 mps

local area network. Each cluster includes a

collection of desktop machines (2.7 GHZ CPU and

0.5 GB of RAM), and an IBM xSeries server which

hosts the cluster’s principal. A set of sorting

services based on the bubble, insertion and selection

algorithms are deployed on the grid test-bed. The

prototype implementation of the proposed capacity

model considers a resource set that includes the

CPU, RAM, virtual memory, running processes,

and running threads. Although the ability of the

system to spawn new threads and processes

depends on the first three types of resources, the

inclusion of the later elements enable a more

efficient control of the resources’ usage by the

deployed services. For the reported experiments,

the inter-arrival time of service requests follows a

Poisson distribution with a randomly selected rate.

The requested services are randomly chosen among

the three deployed sorting services. The size of the

data being sorted is generated using a Gaussian

process so as to simulate a random distribution of

the resource needs of the service requests.

The objectives of the experimental work is

threefold; namely: (1) to illustrate the ability of the

model to provide an adequate quantification of the

hosting environment’s capacity to handle inbound

service requests; (2) to compare the proposed

model, labeled as the Dynamic Service Capacity

(DSC) model, against the traditional approach of

static slot capacity allocation referred to here as the

Static Slot Capacity (SSC); and (3) to illustrate the

validity of the proposed strategy of capacity

estimation by potential service consumers.

For the first set of experiments, Figs 6-9 show a

direct correlation between the load and the residual

capacity, whereby a load increase resulted in the

decrease of the capacity and vise-versa. This

correlation is asserted for a significant spread of the

service request makespan distribution as illustrated

in Fig. 10.

Page 8 Journal of Computer Science and Technology. 22(04) : 505-514, 2007.

The original publication is available at www.springerlink.com

Fig. 6. Service load

Fig. 7. Residual capacity as a percentage of the zero load

capacity.

Fig. 8. Resource load as a percentage of the zero load levels

Fig. 9. Process and Thread loads as a percentage of the

maximum allowed numbers of processes and threads.

Fig. 10. Service request makespan distribution

This observed load-capacity correlation in addition

to the absence of any pattern of resource starvation

may suggest that the model reflects the real capacity

of the hosting environment (see Figs 8-9). In order

to further assert the validity of the above argument,

the following conjecture is formulated: if the

proposed model is adequate in its representation of

the environment’s service capacity, then it would be

possible for a scheduler in closed loop with the

proposed model to achieve a steady state

exploitation dynamics where the load is maintained

at its maximum level with a low residual service

capacity to spare. Another experiment that was run

to test this conjecture show that (Figs 11-13): (1)

indeed the resource exploitation converged, in a

stable fashion, to a steady state; (2) the steady state

corresponds to a maximum exploitation where the

Page 9 Journal of Computer Science and Technology. 22(04) : 505-514, 2007.

The original publication is available at www.springerlink.com

number of concurrently handled service requests

was maintained with little or no residual capacity to

spare. It needs to be noted that while the service

capacity available at zero load is normalized to 100,

it does not mean that the number of service requests

that can be handled concurrently is 100. This is

because the servslot, as defined in section 3, is equal

to the average share of the total initial capacity that

is consumed per running service instance. As a

result its value changes in time in response to the

nature of the load. For example, a load of 10

requests and an observed zero residual capacity at a

given time instant means that, for that specific

instant a servslot is worth 10% of the zero load

capacity.

Fig. 11. Service load

Fig. 12. Residual Service Capacity

Fig. 13. Service request makespan distribution

In a second set of experiments a comparison is

conducted against the SSC model because of its

equally advantageous simplicity. The size of the

sorted data is chosen to be Gaussian distributed to

create a realistic distribution of the capacity needs

of the service requests. Figures 14 and 15 illustrate

the performance of the SSC and DSC models for a

standard deviation 30  and different maximum

slot limits maxa for the SSC model. The observed

fluctuating low residual capacity for the SSC model

increases the likelihood of sudden resource

depletion and potential runtime fault occurrences.

For some experimental runs, the virtual memory

was so depleted that the Windows Services used to

collect the resource and task states crashed.

Fig. 14. Service load for 30  and maxa =40, 80

Page 10 Journal of Computer Science and Technology. 22(04) : 505-514, 2007.

The original publication is available at www.springerlink.com

Fig. 15. Residual capacity for σ =30 and

max
a =40, 80

In contrast, the DSC model exhibited a stable

performance that was expected given the resource

state feedback. More experimental runs were

conducted for a wider distribution of the capacity

needs of the submitted service requests. The

dynamics of resource consumption shown in Figs

16-19 is visibly more oscillatory for the SSC model

and did cause a critical depletion of resources and a

consequent crash of the monitoring infrastructure

which had to be restarted (Figs 18-19).

Fig. 16. Service load σ =60 and

max
a =40

Fig. 17. Residual capacity for σ =60 and
max

a = 40

Fig. 18. Service load forσ =60 and

max
a = 80

Fig. 19. Residual capacity for σ =60 and

max
a = 80

The last set of experiments involved three clusters

configured as immediate neighbors. Submitted

requests at each cluster are automatically forwarded

Page 11 Journal of Computer Science and Technology. 22(04) : 505-514, 2007.

The original publication is available at www.springerlink.com

to neighboring clusters without any optimized

scheduling so as to analyze the dynamic estimation

strategy given in section 4. Fig. 20 depicts the ratio

of service denials D
D

T

n

n
  versus ()m

k .
Tn is the

total number of requests submitted across all three

clusters, and Dn is the number of service requests

that were denied handling because of insufficient

availability of service capacity. The key result of

Fig. 20 is the observed inverse proportionality

between D and ()m

k which suggests that the use of

()m

k is an adequate predictor of the available

capacity of peer clusters. However, given the

latencies associated with the dissemination of

capacity information between clusters, it may

appropriate to consider in future works the use of

past values of ()m

k as part of a more generalized

prediction model.

Fig. 20. Ratio of service denials as a function of

()m

k

7 Conclusion and Future Works

The paper put forth the foundations for a model of

grid service capacity to overcome some of the

complexities and challenges associated with the use

of traditional attribute-value based resource models.

The new approach includes the quantification of the

aggregated service capacity of a hosting

environment using a dynamic measure called

servslot. The experimental results show the extent

to which the proposed model provides an adequate

measure of capacity to support the grid

management mechanisms such as scheduling.

Compared to the traditional model of static slot

capacity, the proposed model is shown to enable

more robust resource exploitation in the face of

varying resource state. However, there remain

numerous issues that may be addressed in future

works. In particular, the use of a non-linear model

of service capacity using Neural Network, trained

through profiling of resource consumption, may

offer a generalized solution to the modeling of grid

service capacity. Second, the estimation of the

ability of peer clusters to handle forwarded services

requests may benefit from a strategy based on a

time-series model of residual capacity. Finally,

more investigations are needed to study the effect

of latency on the leverage of the disseminated

capacity information provided by the proposed

model.

References

[1] Foster, I., and Kesselman, C. The grid:

blueprint for a new computing infrastructure,

Elsevier Science, 2004.

[2] Iyengar, V., Tilak, S., Lewis, M. J., and Abu-

Ghazaleh, N. B. Non-Uniform Information

Dissemination for Dynamic Grid Resource

Discovery. In Proc. 3rd IEEE International

Symposium on Network Computing and

Applications (NCA04), Cambridge, MA, USA,

2004, pp. 97-106.

[3] Krauter, K., Buyya, R., and Maheswaran, M. A

taxonomy and survey of grid resource

management systems for distributed computing.

Software - Practice and Experience, 2002, 32(2):

135-164.

[4] Wu, X.-C., Li, H., and Ju, J.-B. A prototype of

dynamically disseminating and discovering

resource information for resource managements in

computational grid. In Proc. 3rd International

Conference on Machine Learning and Cybernetics,

Shanghai. China, 2004, pp. 2893-2898.

[5] Maheswaran, M. Data dissemination

approaches for performance discovery in grid

computing systems. In Proc. 15th International

Parallel and Distributed Processing Symposium

(IPDPS '01), Nice, France, 2001, pp. 910 - 923.

Page 12 Journal of Computer Science and Technology. 22(04) : 505-514, 2007.

The original publication is available at www.springerlink.com

[6] Casavant, T. L., and Kuhl, J. G. A Taxonomy

of Scheduling in General-Purpose Distributed

Computing Systems. IEEE Transactions on

Software Engineering, 1988, 14(2): 141-155.

[7] He, X., Sun, X., and Von Laszewski, G. QoS

guided Min-Min heuristic for grid task scheduling.

Journal of Computer Science and Technology,

2003, 18(4): 442-451.

[8] Spooner, D. P., Jarvis, S. A., Cao, J., Saini, S.,

and Nudd, G. R. Local grid scheduling techniques

using performance prediction. IEE Proceedings:

Computers and Digital Techniques, 2003, 150(2):

87-96.

[9] Bukhari, U., and Abbas, F. A comparative

study of naming, resolution and discovery schemes

for networked environments. In Proc. 2nd Annual

Conference on Communication Networks and

Services Research, Suzhou, China, 2004, pp. 265 -

272.

[10] Dimakopoulos, V. V., and Pitoura, E. A peer-

to-peer approach to resource discovery in multi-

agent systems. In Lecture Notes in Artificial

Intelligence 2782, Springer-Verlag, 2003, pp. 62-

77.

[11] Huang, Z., Gu, L., Du, B., and He, C. Grid

resource specification language based on XML

and its usage in resource registry meta-service. In

Proc. 2004 IEEE International Conference on

Services Computing, Shanghai, China, 2004, pp.

467 - 470.

[12] Zhu, Y., and Zhang, J.-L. Distributed storage

based on intelligent agent. In Proc. 3rd

International Conference on Machine Learning and

Cybernetics, Shanghai, China, 2004, pp. 297-301.

[13] Bradley, A., Curran, K., and Parr, G.

Discovering resources in computational GRID

environments. Journal of Supercomputing, 2006,

35(1): 27-49.

[14] Huang, Y., and Bhatti, S. N. Decentralized

resilient grid resource management overlay

networks. In Proc. 2004 IEEE International

Conference on Services Computing, SCC 2004,

2004, pp. 372 - 379.

[15] Fox, G. Integrating computing and

information on grids. Computing in Science and

Engineering, 2003, 5(4): 94- 96.

[16] Czajkowski, K., Foster, I., and Kesselman, C.

Agreement-based resource management.

Proceedings of the IEEE, 2005, 93(3): 631-643.

[17] Graupner, S., Kotov, V., Andrzejak, A., and

Trinks, H. Service-centric globally distributed

computing. IEEE Internet Computing, 2003, 7(4):

36 - 43.

[18] Faloutsos, M., Faloutsos, P., and Faloutsos, C.

On power-law relationships of the Internet

topology. Computer Communication Review,

1999, 29(4): 251-262.

[19] Barabási, A., and Albert, R. Emergence of

Scaling in Random Networks. Science, 1999,

286(5489): 509-512.

[20] Ripeanu, M., Iamnitchi, A., and Foster, I.

Mapping the Gnutella network. IEEE Internet

Computing, 2002, 6(1): 50-57.

[21] Al-Ali, R., Hafid, A., Rana, O., and Walker,

D. An approach for quality of service adaptation in

service-oriented Grids. Concurrency Computation

Practice and Experience, 2004, 16(5): 401-412.

[22] Shannon, C. E. A mathematical theory of

communication. Bell Systems Technical Journal,

1948, 27(1): 623-656.

[23] Derbal, Y. Entropic grid scheduling. Journal

of Grid Computing, 2006, 4(4): 373-394.

[24] Zhang, X., and Schopf, J. M. Performance

analysis of the Globus toolkit monitoring and

discovery service, MDS2. In Proc. IEEE

International Performance, Computing and

Communications Conference, Chicago, IL USA,

2004, pp. 843-849.

[25] Derbal, Y. A probabilistic scheduling

heuristic for computational grids. Multiagent and

Grid Systems, 2006, 2(1): 45-59.

